Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interpretable By Design Architectures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interpretable By Design Architectures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interpretable By Design Architectures"
Zhang, Xinyu, Vincent C. S. Lee, Jia Rong, Feng Liu und Haoyu Kong. „Multi-channel convolutional neural network architectures for thyroid cancer detection“. PLOS ONE 17, Nr. 1 (21.01.2022): e0262128. http://dx.doi.org/10.1371/journal.pone.0262128.
Der volle Inhalt der QuelleXie, Nan, und Yuexian Hou. „MMIM: An Interpretable Regularization Method for Neural Networks (Student Abstract)“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 18 (18.05.2021): 15933–34. http://dx.doi.org/10.1609/aaai.v35i18.17963.
Der volle Inhalt der QuelleDi Gioacchino, Andrea, Jonah Procyk, Marco Molari, John S. Schreck, Yu Zhou, Yan Liu, Rémi Monasson, Simona Cocco und Petr Šulc. „Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection“. PLOS Computational Biology 18, Nr. 9 (29.09.2022): e1010561. http://dx.doi.org/10.1371/journal.pcbi.1010561.
Der volle Inhalt der QuelleFeinauer, Christoph, Barthelemy Meynard-Piganeau und Carlo Lucibello. „Interpretable pairwise distillations for generative protein sequence models“. PLOS Computational Biology 18, Nr. 6 (23.06.2022): e1010219. http://dx.doi.org/10.1371/journal.pcbi.1010219.
Der volle Inhalt der QuelleZhang, Zizhao, Han Zhang, Long Zhao, Ting Chen, Sercan Ö. Arik und Tomas Pfister. „Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 3 (28.06.2022): 3417–25. http://dx.doi.org/10.1609/aaai.v36i3.20252.
Der volle Inhalt der QuelleGao, Xinjian, Tingting Mu, John Yannis Goulermas, Jeyarajan Thiyagalingam und Meng Wang. „An Interpretable Deep Architecture for Similarity Learning Built Upon Hierarchical Concepts“. IEEE Transactions on Image Processing 29 (2020): 3911–26. http://dx.doi.org/10.1109/tip.2020.2965275.
Der volle Inhalt der QuelleLiu, Hao, Youchao Sun, Xiaoyu Wang, Honglan Wu und Hao Wang. „NPFormer: Interpretable rotating machinery fault diagnosis architecture design under heavy noise operating scenarios“. Mechanical Systems and Signal Processing 223 (Januar 2025): 111878. http://dx.doi.org/10.1016/j.ymssp.2024.111878.
Der volle Inhalt der QuelleSturm, Patrick Obin, und Anthony S. Wexler. „Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0)“. Geoscientific Model Development 15, Nr. 8 (28.04.2022): 3417–31. http://dx.doi.org/10.5194/gmd-15-3417-2022.
Der volle Inhalt der QuelleJacob, Stefan, und Christian Koch. „Unveiling weak auditory evoked potentials using data-driven filtering“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A141. http://dx.doi.org/10.1121/10.0023054.
Der volle Inhalt der QuelleZhou, Shuhui. „An exploration of KANs and CKANs for more efficient deep learning architecture“. Applied and Computational Engineering 83, Nr. 1 (27.09.2024): 20–25. http://dx.doi.org/10.54254/2755-2721/83/2024glg0060.
Der volle Inhalt der QuelleDissertationen zum Thema "Interpretable By Design Architectures"
Jeanneret, Sanmiguel Guillaume. „Towards explainable and interpretable deep neural networks“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC229.
Der volle Inhalt der QuelleDeep neural architectures have demonstrated outstanding results in a variety of computer vision tasks. However, their extraordinary performance comes at the cost of interpretability. As a result, the field of Explanable AI has emerged to understand what these models are learning as well as to uncover their sources of error. In this thesis, we explore the world of explainable algorithms to uncover the biases and variables used by these parametric models in the context of image classification. To this end, we divide this thesis into four parts. The first three chapters proposes several methods to generate counterfactual explanations. In the first chapter, we proposed to incorporate diffusion models to generate these explanations. Next, we link the research areas of adversarial attacks and counterfactuals. The next chapter proposes a new pipeline to generate counterfactuals in a fully black-box mode, \ie, using only the input and the prediction without accessing the model. The final part of this thesis is related to the creation of interpretable by-design methods. More specifically, we investigate how to extend vision transformers into interpretable architectures. Our proposed methods have shown promising results and have made a step forward in the knowledge frontier of current XAI literature
Kumar, Rakesh. „Holistic design for multi-core architectures“. Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3222991.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed September 20, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 182-193).
Poyias, Kyriakos. „Design-by-contract for software architectures“. Thesis, University of Leicester, 2014. http://hdl.handle.net/2381/28924.
Der volle Inhalt der QuelleShao, Yakun. „Design and Modeling of Specialized Architectures“. Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493560.
Der volle Inhalt der QuelleEngineering and Applied Sciences - Computer Science
Davies, Daniel. „Representation of multiple engineering viewpoints in Computer Aided Design through computer-interpretable descriptive markup“. Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488893.
Der volle Inhalt der QuelleIppolito, Corey A. „Software architectures for flight simulation“. Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/15749.
Der volle Inhalt der QuelleNuzman, Joseph. „Memory subsystem design for explicit multithreading architectures“. College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/146.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Smith, Richard Bartlett. „Design and integrity of deterministic system architectures“. Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445115/.
Der volle Inhalt der QuelleRoomi, Akeel S. „Multiprocessor computer architectures : algorithmic design and applications“. Thesis, Loughborough University, 1989. https://dspace.lboro.ac.uk/2134/10872.
Der volle Inhalt der QuelleDasgupta, Sohini. „Formal design and synthesis of GALS architectures“. Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446196.
Der volle Inhalt der QuelleBücher zum Thema "Interpretable By Design Architectures"
Cpałka, Krzysztof. Design of Interpretable Fuzzy Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52881-6.
Der volle Inhalt der QuelleRoberto, Feo, und Hurtado Rosario, Hrsg. Abandon architectures. [Miami?]: (Name) Publications, 2009.
Den vollen Inhalt der Quelle findenPenny, Nii, und United States. National Aeronautics and Space Administration., Hrsg. Software design by reusing architectures. Stanford, Calif: Knowledge Systems Laboratory, Dept. of Computer Science, Stanford University, 1992.
Den vollen Inhalt der Quelle findenPenny, Nii K., und United States. National Aeronautics and Space Administration., Hrsg. Software design by reusing architectures. Stanford, Calif: Knowledge Systems Laboratory, Dept. of Computer Science, Stanford University, 1992.
Den vollen Inhalt der Quelle findenMinoli, Daniel. Internet architectures. New York: Wiley, 1999.
Den vollen Inhalt der Quelle findenPoletti, Linda. Interpretare e progettare: La rigenerazione partecipata dagli spazi scolastici per l'infanzia : il caso della Scuola Cadorna a Milano. Santarcangelo di Romagna (RN): Maggioli editore, 2019.
Den vollen Inhalt der Quelle findenCiminiera, Luigi. Advanced microprocessor architectures. Wokingham, England: Addison-Wesley Pub. Co., 1987.
Den vollen Inhalt der Quelle findenSvetlana, Kartashev, und Kartashev Steven I, Hrsg. Supercomputing systems: Architectures, design, and performance. New York: Van Nostrand Reinhold, 1990.
Den vollen Inhalt der Quelle findenFrance, Fondation électricité de, Institut français d'architecture und Espace Electra, Hrsg. Architectures de l'électricité. Paris: Norma, 1992.
Den vollen Inhalt der Quelle findenFrance, Fondation Electricite de, Institute Francais d'Architecture und L'Espace Electra, Hrsg. Architectures de l'electricite. Paris: NORMA, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Interpretable By Design Architectures"
Perumal, Boominathan, Swathi Jamjala Narayanan und Sangeetha Saman. „Explainable Deep Learning Architectures for Product Recommendations“. In Explainable, Interpretable, and Transparent AI Systems, 226–55. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003442509-13.
Der volle Inhalt der QuelleVaucher, Cicero. „Synthesizer Architectures“. In Analog Circuit Design, 291–329. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2602-2_14.
Der volle Inhalt der QuelleAnker, Peder. „Computing environmental design“. In Computer Architectures, 15–34. Milton Park, Abingdon, Oxon : New York, NY : Routledge, 2020 | Series: Routledge research in design, technology: Routledge, 2019. http://dx.doi.org/10.4324/9780429264306-2.
Der volle Inhalt der QuelleTang, Antony, Minh H. Tran, Jun Han und Hans van Vliet. „Design Reasoning Improves Software Design Quality“. In Quality of Software Architectures. Models and Architectures, 28–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87879-7_2.
Der volle Inhalt der QuelleBrennan, AnnMarie. „The work of design and the design of work“. In Computer Architectures, 35–57. Milton Park, Abingdon, Oxon : New York, NY : Routledge, 2020 | Series: Routledge research in design, technology: Routledge, 2019. http://dx.doi.org/10.4324/9780429264306-3.
Der volle Inhalt der QuelleSelf, Douglas. „Preamplifier Architectures“. In Small Signal Audio Design, 193–98. Third edition. | Abingdon, Oxon ; New York, NY : Routledge, 2020.: Focal Press, 2020. http://dx.doi.org/10.4324/9781003031833-7.
Der volle Inhalt der QuelleSundström, Lars. „Linear Transmitter Architectures“. In Analog Circuit Design, 303–23. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/0-306-47950-8_15.
Der volle Inhalt der QuelleLano, Kevin, José Luiz Fiadeiro und Luís Andrade. „Software Architectures“. In Software Design Using Java 2, 50–86. London: Macmillan Education UK, 2002. http://dx.doi.org/10.1007/978-1-4039-1466-8_3.
Der volle Inhalt der QuelleLafi, Walid, und Didier Lattard. „3D Architectures“. In Design Technology for Heterogeneous Embedded Systems, 321–38. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1125-9_15.
Der volle Inhalt der QuelleAhmed, Imran. „ADC Architectures“. In Pipelined ADC Design and Enhancement Techniques, 7–17. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8652-5_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interpretable By Design Architectures"
Mills, Keith G., Fred X. Han, Mohammad Salameh, Shengyao Lu, Chunhua Zhou, Jiao He, Fengyu Sun und Di Niu. „Building Optimal Neural Architectures Using Interpretable Knowledge“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5726–35. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00547.
Der volle Inhalt der QuelleCerasuolo, Francesco, Idio Guarino, Vincenzo Spadari, Giuseppe Aceto und Antonio Pescapé. „XAI for Interpretable Multimodal Architectures with Contextual Input in Mobile Network Traffic Classification“. In 2024 IFIP Networking Conference (IFIP Networking), 757–62. IEEE, 2024. http://dx.doi.org/10.23919/ifipnetworking62109.2024.10619769.
Der volle Inhalt der QuelleRazak, Tajul Rosli, Jonathan M. Garibaldi und Christian Wagner. „A Comprehensive Guideline to Design Interpretable Hierarchical Fuzzy Systems“. In 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/fuzz-ieee60900.2024.10612113.
Der volle Inhalt der QuellePluska, Alexander, Pascal Welke, Thomas Gärtner und Sagar Malhotra. „Logical Distillation of Graph Neural Networks“. In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 920–30. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/86.
Der volle Inhalt der QuelleRana, Amrita, und Kyung Ki Kim. „Tailoring Backbone Architectures for SSD“. In 2024 21st International SoC Design Conference (ISOCC), 388–89. IEEE, 2024. http://dx.doi.org/10.1109/isocc62682.2024.10762601.
Der volle Inhalt der QuelleChapman, Martin, und Vasa Curcin. „A Microservice Architecture for the Design of Computer-Interpretable Guideline Processing Tools“. In IEEE EUROCON 2019 -18th International Conference on Smart Technologies. IEEE, 2019. http://dx.doi.org/10.1109/eurocon.2019.8861830.
Der volle Inhalt der QuelleFusco, Francesco, Michalis Vlachos, Vasileios Vasileiadis, Kathrin Wardatzky und Johannes Schneider. „RecoNet: An Interpretable Neural Architecture for Recommender Systems“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/325.
Der volle Inhalt der QuelleWang, Liwei, Suraj Yerramilli, Akshay Iyer, Daniel Apley, Ping Zhu und Wei Chen. „Data-Driven Design via Scalable Gaussian Processes for Multi-Response Big Data With Qualitative Factors“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-71570.
Der volle Inhalt der QuelleDolar, Tuba, Doksoo Lee und Wei Chen. „Interpretable Neural Network Analyses for Understanding Complex Physical Interactions in Engineering Design“. In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-115103.
Der volle Inhalt der QuelleYe, Zhen, Wei Xue, Xu Tan, Qifeng Liu und Yike Guo. „NAS-FM: Neural Architecture Search for Tunable and Interpretable Sound Synthesis Based on Frequency Modulation“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/651.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interpretable By Design Architectures"
Bailey Bond, Robert, Pu Ren, James Fong, Hao Sun und Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, August 2024. http://dx.doi.org/10.17760/d20680141.
Der volle Inhalt der QuelleMeng, Teresa H. Y. Asynchronous Design for Parallel Processing Architectures. Fort Belvoir, VA: Defense Technical Information Center, Juni 1993. http://dx.doi.org/10.21236/ada266523.
Der volle Inhalt der QuelleMeng, Teresa H. Asynchronous Design for Parallel Processing Architectures. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada237696.
Der volle Inhalt der QuelleMeng, Teresa H. Asynchronous Design for Parallel Processing Architectures. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada230374.
Der volle Inhalt der QuelleAkers, Lex A., Mark R. Walker und Siamack Haghighi. Design and Training of Limited-Interconnect Architectures. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada251598.
Der volle Inhalt der QuelleCarothers, Christopher. Enabling Co-Design of Multi-Layer Exascale Storage Architectures. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1311761.
Der volle Inhalt der QuelleWeisgraber, Todd H., Ward Small, Jeremy M. Lenhardt, Thomas Metz, Christopher M. Spadaccini, Robert S. Maxwell, Eric B. Duoss und Thomas S. Wilson. Universal Design Curves for Elastomeric Direct Ink-Writing Architectures. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1455400.
Der volle Inhalt der QuelleParhi, Keshab K. Design Tools and Architectures for Dedicated Digital Signal Processing (DSP) Processors. Fort Belvoir, VA: Defense Technical Information Center, Juli 1996. http://dx.doi.org/10.21236/ada397589.
Der volle Inhalt der QuelleMudunuru, Maruti, James Ang, Halappanavar Mahentesh, Simon Hammond, Gokhale Maya, James Hoe, Sreepathi Sarat, Norman Matthew, Ivy Peng und Philip Jones. Perspectives on AI Architectures and Co-design for Earth System Predictability. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/2378014.
Der volle Inhalt der QuelleMaccarone, Lee, Michael Rowland, Robert Brulles und Andrew Hahn. Design of Defensive Cybersecurity Architectures for High Temperature, Gas-Cooled Reactors. Office of Scientific and Technical Information (OSTI), August 2024. http://dx.doi.org/10.2172/2463004.
Der volle Inhalt der Quelle