Zeitschriftenartikel zum Thema „Interpretability of AI Models for Parkinson's Disease Detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Interpretability of AI Models for Parkinson's Disease Detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Samuel Fanijo, Uyok Hanson, Taiwo Akindahunsi, Idris Abijo und Tinuade Bolutife Dawotola. „Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases“. World Journal of Advanced Research and Reviews 19, Nr. 2 (30.08.2023): 1578–87. http://dx.doi.org/10.30574/wjarr.2023.19.2.1432.
Der volle Inhalt der QuelleAdeniran, Opeyemi Taiwo, Blessing Ojeme, Temitope Ezekiel Ajibola, Ojonugwa Oluwafemi Ejiga Peter, Abiola Olayinka Ajala, Md Mahmudur Rahman und Fahmi Khalifa. „Explainable MRI-Based Ensemble Learnable Architecture for Alzheimer’s Disease Detection“. Algorithms 18, Nr. 3 (13.03.2025): 163. https://doi.org/10.3390/a18030163.
Der volle Inhalt der QuelleHamza, Naeem, Nuaman Ahmed und Naeema Zainaba. „A Comparative Analysis of Traditional and AI-Driven Methods for Disease Detection: Novel Approaches, Methodologies, and Challenges“. Journal of Medical Health Research and Psychiatry 01, Nr. 02 (2024): 01–03. https://doi.org/10.70844/jmhrp.2024.1.2.28.
Der volle Inhalt der QuelleFatima, Shereen, Hidayatullah Shaikh, Attaullah Sahito und Asadullah Kehar. „A Review of Skin Disease Detection Using Deep Learning“. VFAST Transactions on Software Engineering 12, Nr. 4 (31.12.2024): 220–38. https://doi.org/10.21015/vtse.v12i4.2022.
Der volle Inhalt der QuelleHasan Saif, Fatima, Mohamed Nasser Al-Andoli und Wan Mohd Yaakob Wan Bejuri. „Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications“. Applied Sciences 14, Nr. 22 (05.11.2024): 10121. http://dx.doi.org/10.3390/app142210121.
Der volle Inhalt der QuelleRakhi Raghukumar, Aswathi V Nair, Amrutha Raju, Aina S Dcruz und Susheel George Joseph. „AI Used to Predict Alzheimer’s Disease“. International Research Journal on Advanced Engineering and Management (IRJAEM) 2, Nr. 12 (12.12.2024): 3647–51. https://doi.org/10.47392/irjaem.2024.0541.
Der volle Inhalt der QuelleIsmail Y und Vijaya Kumar Voleti. „A Review on Usage of Artificial Intelligence for Early Detection and Management of Alzheimer's Disease“. Journal of Pharma Insights and Research 2, Nr. 5 (04.10.2024): 007–13. http://dx.doi.org/10.69613/06tz7453.
Der volle Inhalt der QuellePaul, Tanmoy, Omiya Hassan, Christina S. McCrae, Syed Kamrul Islam und Abu Saleh Mohammad Mosa. „An Explainable Fusion of ECG and SpO2-Based Models for Real-Time Sleep Apnea Detection“. Bioengineering 12, Nr. 4 (03.04.2025): 382. https://doi.org/10.3390/bioengineering12040382.
Der volle Inhalt der QuelleSarma Borah, Proyash Paban, Devraj Kashyap, Ruhini Aktar Laskar und Ankur Jyoti Sarmah. „A Comprehensive Study on Explainable AI Using YOLO and Post Hoc Method on Medical Diagnosis“. Journal of Physics: Conference Series 2919, Nr. 1 (01.12.2024): 012045. https://doi.org/10.1088/1742-6596/2919/1/012045.
Der volle Inhalt der QuelleGupta, Ayush, Jeya Mala D., Vishal Kumar Yadav und Mayank Arora. „Dissecting Retinal Disease: A Multi-Modal Deep Learning Approach with Explainable AI for Disease Classification across Various Classes“. International Journal of Online and Biomedical Engineering (iJOE) 21, Nr. 02 (17.02.2025): 38–51. https://doi.org/10.3991/ijoe.v21i02.51409.
Der volle Inhalt der QuelleKhan, Mohammad Badhruddouza, Salwa Tamkin, Jinat Ara, Mobashwer Alam und Hanif Bhuiyan. „CropsDisNet: An AI-Based Platform for Disease Detection and Advancing On-Farm Privacy Solutions“. Data 10, Nr. 2 (18.02.2025): 25. https://doi.org/10.3390/data10020025.
Der volle Inhalt der QuelleJafar, Abbas, und Myungho Lee. „Enhancing Kidney Disease Diagnosis Using ACO-Based Feature Selection and Explainable AI Techniques“. Applied Sciences 15, Nr. 6 (10.03.2025): 2960. https://doi.org/10.3390/app15062960.
Der volle Inhalt der QuelleAlborzi, Melina, und Parsa Abadi. „OSTEO-AI: A Systematic Review and Meta-Analysis of Artificial Intelligence Models for Osteoarthritis and Osteoporosis Detection and Prognosis“. Undergraduate Research in Natural and Clinical Science and Technology (URNCST) Journal 9, Nr. 2 (14.02.2025): 1–14. https://doi.org/10.26685/urncst.783.
Der volle Inhalt der QuelleSingh, Jaswinder, und Gaurav Dhiman. „A Review on Predictive Analytics for Early Disease Detection in Neonatal Healthcare using Artificial Intelligence“. Journal of Neonatal Surgery 14, Nr. 5S (15.03.2025): 831–42. https://doi.org/10.52783/jns.v14.2158.
Der volle Inhalt der QuelleAbbas, Shahid, Abdul Sattar, Syeda Hina Shah, Sidrah Hafeez, Waqas Mahmood, Raza iqbal, Keziah Shaheen, Pervaiz Azam und Tazeem Shahbaz. „THE ROLE OF ARTIFICIAL INTELLIGENCE IN PERSONALIZED MEDICINE AND PREDICTIVE DIAGNOSTICS – A NARRATIVE REVIEW“. Insights-Journal of Health and Rehabilitation 3, Nr. 1 (Health & Allied) (24.02.2025): 624–31. https://doi.org/10.71000/k6cga886.
Der volle Inhalt der QuelleNasheet Tarik. „Bridging the Gaps in AI-Driven Healthcare: Enhancing Interpretability, Affordability, and Security for Scalable Patient-Centered Solutions“. Journal of Information Systems Engineering and Management 10, Nr. 19s (12.03.2025): 74–86. https://doi.org/10.52783/jisem.v10i19s.2977.
Der volle Inhalt der QuelleAlhassun, Wejdan H., Abdulaziz S. Alothman und Sultan A. Alfawaz. „The Role of AI in Early Detection of Alzheimer's and Parkinson's Diseases: A Literature Survey“. Asian Journal of Research in Computer Science 18, Nr. 2 (04.02.2025): 186–96. https://doi.org/10.9734/ajrcos/2025/v18i2570.
Der volle Inhalt der QuelleVenugopal Boppana. „Plant Disease Detection Using Hybrid MobileNetV2- Compact CNN Architecture with LIME Integration“. Journal of Information Systems Engineering and Management 10, Nr. 13s (10.02.2025): 554–68. https://doi.org/10.52783/jisem.v10i13s.2111.
Der volle Inhalt der QuelleMeena Jindal und Khushwant Kaur. „Enhancing Agricultural Sustainability Through AI-Powered Image Processing: Review Study on Plant Disease Detection“. International Journal of Scientific Research in Science and Technology 11, Nr. 6 (10.12.2024): 490–96. https://doi.org/10.32628/ijsrst24114312.
Der volle Inhalt der QuelleAbukaresh, ALaa Im, und Ali Okatan. „AI-Based Early Detection of Parkinson's Disease using Mri: A Comparative Analysis of Densenet121 and Resnet Models“. EURAS Journal of Engineering and Applied Sciences 4, Nr. 2 (2021): 81–117. http://dx.doi.org/10.17932/ejeas.2021.024/ejeas_v04i2003.
Der volle Inhalt der QuelleJunior, Kamese Jordan, Kouayep Sonia Carole, Tagne Poupi Theodore Armand, Hee-Cheol Kim und The Alzheimer’s Disease Neuroimaging Initiative The Alzheimer’s Disease Neuroimaging Initiative. „Alzheimer’s Multiclassification Using Explainable AI Techniques“. Applied Sciences 14, Nr. 18 (14.09.2024): 8287. http://dx.doi.org/10.3390/app14188287.
Der volle Inhalt der QuelleShakir, Daniah Abdul Qahar, und Eman Turki Mahdi. „Machine Learning Techniques for Skin Fungal Infection Detection -A Review“. Mesopotamian Journal of Artificial Intelligence in Healthcare 2024 (05.12.2024): 177–83. https://doi.org/10.58496/mjaih/2024/018.
Der volle Inhalt der QuelleRoshan, M. K. Gagan. „Multiclass Medical X-ray Image Classification using Deep Learning with Explainable AI“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 6 (30.06.2022): 4518–26. http://dx.doi.org/10.22214/ijraset.2022.44541.
Der volle Inhalt der QuelleMuriithi, Dennis Kariuki, Victor Wandera Lumumba, Olushina Olawale Awe und Daniel Mwangi Muriithi. „An Explainable Artificial Intelligence Models for Predicting Malaria Risk in Kenya“. European Journal of Artificial Intelligence and Machine Learning 4, Nr. 1 (28.02.2025): 1–8. https://doi.org/10.24018/ejai.2025.4.1.47.
Der volle Inhalt der QuelleIsiaka, Salman O., Ronke S. Babatunde und Rafiu M. Isiaka. „Exploring Artificial Intelligence (AI) Technologies in Predictive Medicine: A Systematic Review“. Kasu Journal of Computer Science 1, Nr. 2 (30.06.2024): 366–77. http://dx.doi.org/10.47514/kjcs/2024.1.2.0014.
Der volle Inhalt der QuelleTulsani, Vijya, Prashant Sahatiya, Jignasha Parmar und Jayshree Parmar. „XAI Applications in Medical Imaging: A Survey of Methods and Challenges“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 9 (27.10.2023): 181–86. http://dx.doi.org/10.17762/ijritcc.v11i9.8332.
Der volle Inhalt der QuelleKhushi Jha und Awadhesh Kumar. „Role of Artificial Intelligence in Detecting Neurological Disorders“. International Research Journal on Advanced Engineering Hub (IRJAEH) 2, Nr. 02 (23.02.2024): 73–79. http://dx.doi.org/10.47392/irjaeh.2024.0015.
Der volle Inhalt der QuelleSingh, Jaswinder, und Gaurav Dhiman. „A Survey on Artificial Intelligence in Precision Medicine and Healthcare Analysis for Neonatal Surgery“. Journal of Neonatal Surgery 14, Nr. 5S (15.03.2025): 799–808. https://doi.org/10.52783/jns.v14.2155.
Der volle Inhalt der QuellePatel, Mr Dhavalkumar Upendrabhai, und Dr Suchita Patel. „A Review, Synthesizing Frameworks, and Future Research Agenda: Use of AI & ML Models in Cardiovascular Diseases Diagnosis“. International Journal of Innovative Technology and Exploring Engineering 12, Nr. 11 (30.10.2023): 12–19. http://dx.doi.org/10.35940/ijitee.k9733.10121123.
Der volle Inhalt der QuelleKantapalli, Bhaskar, Arshia Aamena, Chebrolu Yogavarshinee, Badugu Divya Teja und Dasari Teja Sri. „OPTIMIZED SYMPTOM-BASED DEEP LEARNING FRAMEWORK FOR MONKEYPOX DIAGNOSIS WITH LIME EXPLAINABILITY“. Industrial Engineering Journal 54, Nr. 03 (2025): 84–92. https://doi.org/10.36893/iej.2025.v54i3.009.
Der volle Inhalt der QuelleFolorunsho, O., S. E. Akinsanya, O. A. Fagbuagun, S. A. Mogaji und S. K. Raji. „Explainable Ensemble Deep Learning Model for Predicting Diabetic Retinopathy Based on APTOS 2019 Eye Pack Dataset“. LAUTECH Journal of Engineering and Technology 19, Nr. 1 (14.02.2025): 1–14. https://doi.org/10.36108/laujet/5202.91.0110.
Der volle Inhalt der QuelleManepalli, Sailaja, Jobin Varghese, Akku Madslhusdhan, Gandhikota Umamahesh und Kiran Kumar Reddy Penubaka. „AI and ML in Biomedical Research: Unlocking Precision Medicine and Accelerating Discoveries“. Journal of Neonatal Surgery 14, Nr. 11S (03.04.2025): 43–56. https://doi.org/10.52783/jns.v14.2940.
Der volle Inhalt der QuelleMeher, Dinesh, Mrinal Gogoi, Pankaj Bharali, Prajna Anirvan und Shivaram Prasad Singh. „Artificial Intelligence in Small Bowel Endoscopy: Current Perspectives and Future Directions“. Journal of Digestive Endoscopy 11, Nr. 04 (08.10.2020): 245–52. http://dx.doi.org/10.1055/s-0040-1717824.
Der volle Inhalt der QuelleObinna Nweke und Felix Adebayo Bakare. „Automated evaluation systems utilizing data science for enhanced accuracy, transparency, and decision optimization“. World Journal of Advanced Research and Reviews 25, Nr. 2 (28.02.2025): 2606–25. https://doi.org/10.30574/wjarr.2025.25.2.0667.
Der volle Inhalt der QuelleNafisat Temilade Popoola und Felix Adebayo Bakare. „Advanced computational forecasting techniques to strengthen risk prediction, pattern recognition, and compliance strategies“. International Journal of Science and Research Archive 12, Nr. 2 (30.08.2024): 3033–54. https://doi.org/10.30574/ijsra.2024.12.2.1412.
Der volle Inhalt der QuelleTonti, Emanuele, Sofia Tonti, Flavia Mancini, Chiara Bonini, Leopoldo Spadea, Fabiana D’Esposito, Caterina Gagliano, Mutali Musa und Marco Zeppieri. „Artificial Intelligence and Advanced Technology in Glaucoma: A Review“. Journal of Personalized Medicine 14, Nr. 10 (16.10.2024): 1062. http://dx.doi.org/10.3390/jpm14101062.
Der volle Inhalt der QuelleSingh, Neelu, Swagatika Lenka und Akansha Sharma. „Healthcare Prediction based on ML and Convolutional Neural Network“. Journal of Neonatal Surgery 14, Nr. 6S (17.03.2025): 440–53. https://doi.org/10.52783/jns.v14.2252.
Der volle Inhalt der QuelleIdroes, Ghazi Mauer, Teuku Rizky Noviandy, Talha Bin Emran und Rinaldi Idroes. „Explainable Deep Learning Approach for Mpox Skin Lesion Detection with Grad-CAM“. Heca Journal of Applied Sciences 2, Nr. 2 (19.09.2024): 54–63. http://dx.doi.org/10.60084/hjas.v2i2.216.
Der volle Inhalt der QuelleDURGA SAI SIVA VARA PRASAD RAJU, NIDADAVOLU VENKAT, und PENMETSA NAVEENA DEVI. „AI-Assisted Medical Imaging and Heart Disease Diagnosis: A Deep Learning Approach for Automated Analysis and Enhanced Prediction Using Ensemble Classifiers“. Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 6, Nr. 1 (24.10.2024): 210–29. http://dx.doi.org/10.60087/jaigs.v6i1.242.
Der volle Inhalt der QuelleRahmathullah, Rahmathullah, S. Nagakishore Bhavanam und Vasujadevi Midasala. „Deep Learning-Powered Cardiovascular Disease Prediction: A Novel Approach to Early Diagnosis and Risk Assessment“. Journal of Neonatal Surgery 14, Nr. 4 (21.03.2025): 21–31. https://doi.org/10.52783/jns.v14.2421.
Der volle Inhalt der QuelleGalić, Irena, Marija Habijan, Hrvoje Leventić und Krešimir Romić. „Machine Learning Empowering Personalized Medicine: A Comprehensive Review of Medical Image Analysis Methods“. Electronics 12, Nr. 21 (25.10.2023): 4411. http://dx.doi.org/10.3390/electronics12214411.
Der volle Inhalt der QuelleCai, Jingxun, Zne-Jung Lee, Zhihxian Lin und Ming-Ren Yang. „A Novel SHAP-GAN Network for Interpretable Ovarian Cancer Diagnosis“. Mathematics 13, Nr. 5 (06.03.2025): 882. https://doi.org/10.3390/math13050882.
Der volle Inhalt der QuelleMahmoud, Akeel Shaker, Olfa Lamouchi und Safya Belghith. „Advancements in Machine Learning and Deep Learning for Early Diagnosis of Chronic Kidney Diseases: A Comprehensive Review“. Babylonian Journal of Machine Learning 2024 (17.09.2024): 149–56. http://dx.doi.org/10.58496/bjml/2024/015.
Der volle Inhalt der QuelleTrofimov, Yuriy V., Aleksey N. Averkin und Eugenia N. Cheremisina. „Review and Analysis of XAI Methods for Addressing Geoecological Zoning and Public Health Prevention Challenges“. Geoinformatika, Nr. 4 (16.12.2024): 93–118. https://doi.org/10.47148/1609-364x-2024-4-93-118.
Der volle Inhalt der QuelleShujaat, Sohaib. „Automated Machine Learning in Dentistry: A Narrative Review of Applications, Challenges, and Future Directions“. Diagnostics 15, Nr. 3 (24.01.2025): 273. https://doi.org/10.3390/diagnostics15030273.
Der volle Inhalt der QuelleLuz, Ayuns, und Elizabeth Jerry. „Role of Image Segmentation and Deep Learning in Medical Imaging“. International Journal of Advances in Engineering and Management 06, Nr. 12 (Dezember 2024): 125–35. https://doi.org/10.35629/5252-0612125135.
Der volle Inhalt der QuelleGholi Zadeh Kharrat, Fatemeh, Christian Gagne, Alain Lesage, Geneviève Gariépy, Jean-François Pelletier, Camille Brousseau-Paradis, Louis Rochette et al. „Explainable artificial intelligence models for predicting risk of suicide using health administrative data in Quebec“. PLOS ONE 19, Nr. 4 (03.04.2024): e0301117. http://dx.doi.org/10.1371/journal.pone.0301117.
Der volle Inhalt der QuelleRaza, Ali, Akhtar Ali, Sami Ullah, Yasir Nadeem Anjum und Basit Rehman. „Optimizing skin cancer screening with convolutional neural networks in smart healthcare systems“. PLOS ONE 20, Nr. 3 (25.03.2025): e0317181. https://doi.org/10.1371/journal.pone.0317181.
Der volle Inhalt der QuelleMehta, Varshil. „Artificial Intelligence in Medicine: Revolutionizing Healthcare for Improved Patient Outcomes“. Journal of Medical Research and Innovation 7, Nr. 2 (03.06.2023): e000292. http://dx.doi.org/10.32892/jmri.292.
Der volle Inhalt der QuelleTemitope Oluwatosin Fatunmbi. „Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes“. World Journal of Advanced Research and Reviews 17, Nr. 3 (30.03.2023): 1059–77. https://doi.org/10.30574/wjarr.2023.17.3.0306.
Der volle Inhalt der Quelle