Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interpretability of AI Models for Parkinson's Disease Detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interpretability of AI Models for Parkinson's Disease Detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interpretability of AI Models for Parkinson's Disease Detection"
Samuel Fanijo, Uyok Hanson, Taiwo Akindahunsi, Idris Abijo und Tinuade Bolutife Dawotola. „Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases“. World Journal of Advanced Research and Reviews 19, Nr. 2 (30.08.2023): 1578–87. http://dx.doi.org/10.30574/wjarr.2023.19.2.1432.
Der volle Inhalt der QuelleAdeniran, Opeyemi Taiwo, Blessing Ojeme, Temitope Ezekiel Ajibola, Ojonugwa Oluwafemi Ejiga Peter, Abiola Olayinka Ajala, Md Mahmudur Rahman und Fahmi Khalifa. „Explainable MRI-Based Ensemble Learnable Architecture for Alzheimer’s Disease Detection“. Algorithms 18, Nr. 3 (13.03.2025): 163. https://doi.org/10.3390/a18030163.
Der volle Inhalt der QuelleHamza, Naeem, Nuaman Ahmed und Naeema Zainaba. „A Comparative Analysis of Traditional and AI-Driven Methods for Disease Detection: Novel Approaches, Methodologies, and Challenges“. Journal of Medical Health Research and Psychiatry 01, Nr. 02 (2024): 01–03. https://doi.org/10.70844/jmhrp.2024.1.2.28.
Der volle Inhalt der QuelleFatima, Shereen, Hidayatullah Shaikh, Attaullah Sahito und Asadullah Kehar. „A Review of Skin Disease Detection Using Deep Learning“. VFAST Transactions on Software Engineering 12, Nr. 4 (31.12.2024): 220–38. https://doi.org/10.21015/vtse.v12i4.2022.
Der volle Inhalt der QuelleHasan Saif, Fatima, Mohamed Nasser Al-Andoli und Wan Mohd Yaakob Wan Bejuri. „Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications“. Applied Sciences 14, Nr. 22 (05.11.2024): 10121. http://dx.doi.org/10.3390/app142210121.
Der volle Inhalt der QuelleRakhi Raghukumar, Aswathi V Nair, Amrutha Raju, Aina S Dcruz und Susheel George Joseph. „AI Used to Predict Alzheimer’s Disease“. International Research Journal on Advanced Engineering and Management (IRJAEM) 2, Nr. 12 (12.12.2024): 3647–51. https://doi.org/10.47392/irjaem.2024.0541.
Der volle Inhalt der QuelleIsmail Y und Vijaya Kumar Voleti. „A Review on Usage of Artificial Intelligence for Early Detection and Management of Alzheimer's Disease“. Journal of Pharma Insights and Research 2, Nr. 5 (04.10.2024): 007–13. http://dx.doi.org/10.69613/06tz7453.
Der volle Inhalt der QuellePaul, Tanmoy, Omiya Hassan, Christina S. McCrae, Syed Kamrul Islam und Abu Saleh Mohammad Mosa. „An Explainable Fusion of ECG and SpO2-Based Models for Real-Time Sleep Apnea Detection“. Bioengineering 12, Nr. 4 (03.04.2025): 382. https://doi.org/10.3390/bioengineering12040382.
Der volle Inhalt der QuelleSarma Borah, Proyash Paban, Devraj Kashyap, Ruhini Aktar Laskar und Ankur Jyoti Sarmah. „A Comprehensive Study on Explainable AI Using YOLO and Post Hoc Method on Medical Diagnosis“. Journal of Physics: Conference Series 2919, Nr. 1 (01.12.2024): 012045. https://doi.org/10.1088/1742-6596/2919/1/012045.
Der volle Inhalt der QuelleGupta, Ayush, Jeya Mala D., Vishal Kumar Yadav und Mayank Arora. „Dissecting Retinal Disease: A Multi-Modal Deep Learning Approach with Explainable AI for Disease Classification across Various Classes“. International Journal of Online and Biomedical Engineering (iJOE) 21, Nr. 02 (17.02.2025): 38–51. https://doi.org/10.3991/ijoe.v21i02.51409.
Der volle Inhalt der QuelleDissertationen zum Thema "Interpretability of AI Models for Parkinson's Disease Detection"
Filali, razzouki Anas. „Deep learning-based video face-based digital markers for early detection and analysis of Parkinson disease“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAS002.
Der volle Inhalt der QuelleThis thesis aims to develop robust digital biomarkers for early detection of Parkinson's disease (PD) by analyzing facial videos to identify changes associated with hypomimia. In this context, we introduce new contributions to the state of the art: one based on shallow machine learning and the other on deep learning.The first method employs machine learning models that use manually extracted facial features, particularly derivatives of facial action units (AUs). These models incorporate interpretability mechanisms that explain their decision-making process for stakeholders, highlighting the most distinctive facial features for PD. We examine the influence of biological sex on these digital biomarkers, compare them against neuroimaging data and clinical scores, and use them to predict PD severity.The second method leverages deep learning to automatically extract features from raw facial videos and optical flow using foundational models based on Video Vision Transformers. To address the limited training data, we propose advanced adaptive transfer learning techniques, utilizing foundational models trained on large-scale video classification datasets. Additionally, we integrate interpretability mechanisms to clarify the relationship between automatically extracted features and manually extracted facial AUs, enhancing the comprehensibility of the model's decisions.Finally, our generated facial features are derived from both cross-sectional and longitudinal data, which provides a significant advantage over existing work. We use these recordings to analyze the progression of hypomimia over time with these digital markers, and its correlation with the progression of clinical scores.Combining these two approaches allows for a classification AUC (Area Under the Curve) of over 90%, demonstrating the efficacy of machine learning and deep learning models in detecting hypomimia in early-stage PD patients through facial videos. This research could enable continuous monitoring of hypomimia outside hospital settings via telemedicine
Buchteile zum Thema "Interpretability of AI Models for Parkinson's Disease Detection"
Mittal, Shashank, Priyank Kumar Singh, Saikat Gochhait und Shubham Kumar. „Explainable AI (XAI) for Green AI-Powered Disease Prognosis“. In Advances in Medical Diagnosis, Treatment, and Care, 141–60. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1243-8.ch008.
Der volle Inhalt der QuelleDehankar, Pooja, und Susanta Das. „Detection of Heart Disease Using ANN“. In Future of AI in Biomedicine and Biotechnology, 182–96. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3629-8.ch009.
Der volle Inhalt der QuelleBiswas, Neepa, Debarpita Santra, Bannishikha Banerjee und Sudarsan Biswas. „Harnessing the Power of Machine Learning for Parkinson's Disease Detection“. In AIoT and Smart Sensing Technologies for Smart Devices, 140–55. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0786-1.ch008.
Der volle Inhalt der QuelleTripathi, Rati Kailash Prasad, und Shrikant Tiwari. „Unravelling the Enigma of Machine Learning Model Interpretability in Enhancing Disease Prediction“. In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 125–53. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8531-6.ch007.
Der volle Inhalt der QuelleKrishna Pasupuleti, Murali. „AI-Driven Mutation Detection: Transforming Genomic Data into Insights for Disease Prediction“. In AI in Genomic Data Analysis: Identifying Disease-Causing Mutations, 1–28. National Education Services, 2024. http://dx.doi.org/10.62311/nesx/46694.
Der volle Inhalt der QuelleTafadzwa Mpofu, Kelvin, und Patience Mthunzi-Kufa. „Recent Advances in Artificial Intelligence and Machine Learning Based Biosensing Technologies“. In Current Developments in Biosensor Applications and Smart Strategies [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1009613.
Der volle Inhalt der QuelleSharma, Ajay, Devendra Babu Pesarlanka und Shamneesh Sharma. „Harnessing Machine Learning and Deep Learning in Healthcare From Early Diagnosis to Personalized Treatment“. In Advances in Healthcare Information Systems and Administration, 369–98. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-7277-7.ch012.
Der volle Inhalt der QuelleRaj, Sundeep, Arun Prakash Agarwal, Sandesh Tripathi und Nidhi Gupta. „Prediction and Analysis of Digital Health Records, Geonomics, and Radiology Using Machine Learning“. In Prediction in Medicine: The Impact of Machine Learning on Healthcare, 24–43. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815305128124010005.
Der volle Inhalt der Quelle