Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Internet of Things Network (IoTN)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Internet of Things Network (IoTN)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Internet of Things Network (IoTN)"
Itagi, Manjunath, Dankan Gowda V, KDV Prasad, Pullela SVVSR Kumar, Shekhar R und B. Ashreetha. „Performance Analysis of Energy Efficiency and Security Solutions of Internet of Things Protocols“. International Journal of Electrical and Electronics Research 11, Nr. 2 (26.06.2023): 442–50. http://dx.doi.org/10.37391/ijeer.110226.
Der volle Inhalt der QuelleNourildean, Shayma Wail, Mustafa Dhia Hassib und Yousra Abd Mohammed. „Internet of things based wireless sensor network: a review“. Indonesian Journal of Electrical Engineering and Computer Science 27, Nr. 1 (01.07.2022): 246. http://dx.doi.org/10.11591/ijeecs.v27.i1.pp246-261.
Der volle Inhalt der QuelleNikhat Akhtar und Yusuf Perwej. „The internet of nano things (IoNT) existing state and future Prospects“. GSC Advanced Research and Reviews 5, Nr. 2 (30.11.2020): 131–50. http://dx.doi.org/10.30574/gscarr.2020.5.2.0110.
Der volle Inhalt der QuelleKumar, Sumit, und Zahid Raza. „Internet of Things“. International Journal of Systems and Service-Oriented Engineering 7, Nr. 3 (Juli 2017): 32–52. http://dx.doi.org/10.4018/ijssoe.2017070103.
Der volle Inhalt der QuelleSankar, S., Ramasubbareddy Somula, R. Lakshmana Kumar, P. Srinivasan und M. Amala Jayanthi. „Trust-Aware Routing Framework for Internet of Things“. International Journal of Knowledge and Systems Science 12, Nr. 1 (Januar 2021): 48–59. http://dx.doi.org/10.4018/ijkss.2021010104.
Der volle Inhalt der QuelleFadziso, Takudzwa. „Internet of Things in Agriculture for Smart Farming“. Malaysian Journal of Medical and Biological Research 5, Nr. 2 (31.12.2018): 147–56. http://dx.doi.org/10.18034/mjmbr.v5i2.565.
Der volle Inhalt der QuelleEltayeb, Mohamed A. „Internet of Things“. International Journal of Hyperconnectivity and the Internet of Things 1, Nr. 1 (Januar 2017): 1–18. http://dx.doi.org/10.4018/ijhiot.2017010101.
Der volle Inhalt der QuelleGanapathy, Apoorva. „Image Association to URLs across CMS Websites with Unique Watermark Signatures to Identify Who Owns the Camera“. American Journal of Trade and Policy 6, Nr. 3 (2019): 101–6. http://dx.doi.org/10.18034/ajtp.v6i3.543.
Der volle Inhalt der QuelleMaseleno, Andino, Wahidah Hashim, Y. C. Tang Alicia, A. Mahmoud Moamin und Marini Othman. „A Review on Smart Grid Internet of Things“. Journal of Computational and Theoretical Nanoscience 17, Nr. 6 (01.06.2020): 2770–75. http://dx.doi.org/10.1166/jctn.2020.8941.
Der volle Inhalt der QuelleBynagari, Naresh Babu. „Industrial Application of Internet of Things“. Asia Pacific Journal of Energy and Environment 3, Nr. 2 (31.12.2016): 75–82. http://dx.doi.org/10.18034/apjee.v3i2.576.
Der volle Inhalt der QuelleDissertationen zum Thema "Internet of Things Network (IoTN)"
Okumura, Brandon M. „IoTA: Internet of Things Assistant“. DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1769.
Der volle Inhalt der QuelleShahid, Mustafizur Rahman. „Deep learning for Internet of Things (IoT) network security“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS003.
Der volle Inhalt der QuelleThe growing Internet of Things (IoT) introduces new security challenges for network activity monitoring. Most IoT devices are vulnerable because of a lack of security awareness from device manufacturers and end users. As a consequence, they have become prime targets for malware developers who want to turn them into bots. Contrary to general-purpose devices, an IoT device is designed to perform very specific tasks. Hence, its networking behavior is very stable and predictable making it well suited for data analysis techniques. Therefore, the first part of this thesis focuses on leveraging recent advances in the field of deep learning to develop network monitoring tools for the IoT. Two types of network monitoring tools are explored: IoT device type recognition systems and IoT network Intrusion Detection Systems (NIDS). For IoT device type recognition, supervised machine learning algorithms are trained to perform network traffic classification and determine what IoT device the traffic belongs to. The IoT NIDS consists of a set of autoencoders, each trained for a different IoT device type. The autoencoders learn the legitimate networking behavior profile and detect any deviation from it. Experiments using network traffic data produced by a smart home show that the proposed models achieve high performance.Despite yielding promising results, training and testing machine learning based network monitoring systems requires tremendous amount of IoT network traffic data. But, very few IoT network traffic datasets are publicly available. Physically operating thousands of real IoT devices can be very costly and can rise privacy concerns. In the second part of this thesis, we propose to leverage Generative Adversarial Networks (GAN) to generate bidirectional flows that look like they were produced by a real IoT device. A bidirectional flow consists of the sequence of the sizes of individual packets along with a duration. Hence, in addition to generating packet-level features which are the sizes of individual packets, our developed generator implicitly learns to comply with flow-level characteristics, such as the total number of packets and bytes in a bidirectional flow or the total duration of the flow. Experimental results using data produced by a smart speaker show that our method allows us to generate high quality and realistic looking synthetic bidirectional flows
Diratie, Eyassu Dilla. „Hybrid internet of things network for energy-efficient video surveillance system“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG066.
Der volle Inhalt der QuelleWireless visual sensor networks based on IEEE 802.11 mesh networks are effective and suitable solutions for video surveillance systems in monitoring intrusions in selected areas. The IEEE 802.11-based visual sensor networks offer high bit rate video transmissions but suffer from energy inefficiency issues. Moreover, the video transmission in the visual sensor networks requires strict quality of service (QoS) in terms of bandwidth and delay. Also, it is challenging to decrease the overall energy consumption of the network while assuring guaranteed QoS in terms of bandwidth and delay in energy-constrained wireless visual sensor networks. The main contribution of this dissertation is to provide an energy-efficient video surveillance network without compromising the QoS requirement of video transmission. First, we propose a new hybrid IoT network architecture for a video surveillance system that detects and tracks an intruder in the monitoring area. The hybrid IoT network integrates the IEEE 802.11-based multi-hop visual Sensor Networks and LoRa network to provide an autonomous, energy-efficient, high-bitrate video surveillance system. Leveraging the LoRa network characteristics, the LoRa network is utilized as an always-active network for preliminary motion detection and tracking. Moreover, the LoRa network also decides which visual sensor nodes to wake up depending on the tracking information. The Kalman filter is investigated to track the intruder's trajectory from noise measurements of low-power motion sensors to activate only the visual sensor nodes along the intruder's trajectory to provide effective video vigilance. We showed through simulation that Kalman filter estimates and predicts intruder trajectory with reasonable accuracy. Moreover, the proposed hybrid IoT network approach reduces energy consumption significantly compared with a traditional, always active continuous monitoring single-tier visual sensor network. Next, the contribution of this dissertation focuses on an energy-aware and QoS routing mechanism for the IEEE 802.11-based multi-hop visual sensor network of the hybrid IoT network. We propose a routing algorithm that routes a set of video streams to the gateway with guaranteed QoS in terms of bandwidth and delay while minimizing the number of visual sensor nodes that are involved in routing. This maximizes the number of nodes that can be turned off completely to optimize the overall energy consumption of the network without compromising QoS performance. The proposed routing problem is formulated as an Integer Linear Program (ILP) and solved using the branch-and-bound algorithm. Through computer simulation, the performance of the proposed approach is compared with the existing state-of-the-art routing algorithms from the literature. The results clearly show that the proposed mechanism saves a significant amount of the overall energy consumption while guaranteeing QoS in terms of bandwidth and delay
Alm, Anton. „Internet of Things mesh network : Using the Thread networking protocol“. Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-70809.
Der volle Inhalt der QuelleXu, Ran. „Federated Sensor Network architectural design for the Internet of Things (IoT)“. Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13453.
Der volle Inhalt der QuelleCarlquist, Johan. „Evaluating the use of ICN for Internet of things“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-343368.
Der volle Inhalt der QuelleHsu, Alexander Sirui. „Automatic Internet of Things Device Category Identification using Traffic Rates“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/88421.
Der volle Inhalt der QuelleMaster of Science
IoT (Internet of Things) devices are an exploding field, with many devices being created, manufactured, and utilized per year. With the rise of so many internet capable devices, there is a risk that the devices may have vulnerabilities and exploits able to allow unauthorized users to access. While a problem for a consumer network, this is an increased problem in an enterprise network, since much of the information on the network is sensitive and should be kept confidential and private. While a ban of IoT devices on a network is able to solve this problem, with the rise of machine learning able to characterize and recognize patterns, a smarter approach can be created to distinguish when and which types of IoT devices enter the network. Previous attempts to identify IoT devices used signature schemes specific to a single device, but this paper aims to generalize traffic behaviors and identifying a device category rather than a specific IoT device to ensure future new devices can also be recognized. With device category identification in place on an internet network, smarter approaches can be implemented to ensure the devices remain secure while still able to be used.
Frawley, Ryan Joseph. „Logging and Analysis of Internet of Things (IoT) Device Network Traffic and Power Consumption“. DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1911.
Der volle Inhalt der QuelleHobring, Linus, und Philip Söderberg. „A sensor network for the Internet of Things Integrated with a bidirectional backend“. Thesis, Blekinge Tekniska Högskola, Institutionen för kommunikationssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2702.
Der volle Inhalt der QuelleNITTI, MICHELE. „Managing the Internet of Things based on its Social Structure“. Doctoral thesis, Università degli Studi di Cagliari, 2014. http://hdl.handle.net/11584/266422.
Der volle Inhalt der QuelleBücher zum Thema "Internet of Things Network (IoTN)"
Patel, Rajan, Nimisha Patel, Linda Smail, Pariza Kamboj und Mukesh Soni. Intelligent Green Communication Network for Internet of Things. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003371526.
Der volle Inhalt der QuelleUdgata, Siba Kumar, und Nagender Kumar Suryadevara. Internet of Things and Sensor Network for COVID-19. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7654-6.
Der volle Inhalt der QuelleLeebow, Ken. 300 incredible things for travelers on the Internet. Marietta, Ga: 300Incredible.com, 1999.
Den vollen Inhalt der Quelle findenLeebow, Ken. 300 incredible things for travelers on the Internet. Marietta, Ga: 300Incredible.com, 2000.
Den vollen Inhalt der Quelle finden300 incredible things for beanie lovers on the Internet. Marietta, Ga: VIP Pub., 1999.
Den vollen Inhalt der Quelle findenKen, Leebow, Hrsg. 300 incredible things for seniors on the Internet. Marietta, Ga: 300incredible.com, 2000.
Den vollen Inhalt der Quelle findenJapan) IOT (Conference) (2010 Tokyo. 2010 Internet of things: (IOT 2010) , Tokyo, Japan, 29 November- 1 December 2010. Piscataway, NJ: IEEE, 2010.
Den vollen Inhalt der Quelle findenLeebow, Ken. 300 more incredible things to do on the Internet. Marietta, Ga: 300incredible.com, 2000.
Den vollen Inhalt der Quelle findenKen, Leebow, Hrsg. 300 incredible things to learn on the Internet. Marietta, Ga: 300Incredible.Com, LLC, 2000.
Den vollen Inhalt der Quelle findenOuaissa, Mariyam, Mariya Ouaissa, Inam Ullah Khan, Zakaria Boulouard und Junaid Rashid. Low-Power Wide Area Network for Large Scale Internet of Things. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003426974.
Der volle Inhalt der QuelleBuchteile zum Thema "Internet of Things Network (IoTN)"
Wu, Chuan-Kun. „IoT Network Layer Security“. In Internet of Things Security, 107–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1372-2_7.
Der volle Inhalt der QuelleSarwesh, P., N. Shekar V. Shet und K. Chandrasekaran. „Energy-Efficient Network Architecture for IoT Applications“. In Internet of Things, 119–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50758-3_5.
Der volle Inhalt der QuelleKotenko, Igor, Igor Saenko und Fadey Skorik. „IoT Network Administration by Intelligent Decision Support Based on Combined Neural Networks“. In Internet of Things, 1–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21940-5_1.
Der volle Inhalt der QuelleKant, Umang, und Vinod Kumar. „IoT Network Used in Fog and Cloud Computing“. In Internet of Things, 165–87. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1585-7_8.
Der volle Inhalt der QuelleWu, Fan, Christoph Rüdiger, Jean-Michel Redouté und Mehmet Rasit Yuce. „A Wearable Multi-sensor IoT Network System for Environmental Monitoring“. In Internet of Things, 29–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02819-0_3.
Der volle Inhalt der QuelleQian, Zhihong, Yijun Wang, Xue Wang und Shuang Zhu. „M/I Adaptation Layer Network Protocol for IoT Based on 6LoWPAN“. In Internet of Things, 208–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32427-7_28.
Der volle Inhalt der QuelleKhelifi, Fekher. „Monitoring System Based in Wireless Sensor Network for Precision Agriculture“. In Internet of Things (IoT), 461–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37468-6_24.
Der volle Inhalt der QuelleTomaš, Boris, und Neven Vrček. „Smart City Vehicular Mobile Sensor Network“. In Internet of Things. IoT Infrastructures, 70–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19743-2_11.
Der volle Inhalt der QuelleHauschild, Sebastian, und Horst Hellbrück. „Latency and Energy Consumption of Convolutional Neural Network Models from IoT Edge Perspective“. In Internet of Things, 385–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20936-9_31.
Der volle Inhalt der QuelleDalal, Upena, Shweta Shah und Jigisha Patel. „MAC and Network Layer Issues and Challenges for IoT“. In The Internet of Things, 49–78. Boca Raton : CRC Press, 2018.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315156026-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Internet of Things Network (IoTN)"
R Ahmed, Muhammad, Ahmed Al Shihimi, Thirein Myo, Badar Al Baroomi und M. Shamim Kaiser. „Internet of Things Network Architecture and Security Challenges“. In 12th International Conference on Digital Image Processing and Vision. Academy & Industry Research Collaboration, 2023. http://dx.doi.org/10.5121/csit.2023.131313.
Der volle Inhalt der QuelleNitti, Michele, Luigi Atzori und Irena Pletikosa Cvijikj. „Network navigability in the social Internet of Things“. In 2014 IEEE World Forum on Internet of Things (WF-IoT). IEEE, 2014. http://dx.doi.org/10.1109/wf-iot.2014.6803200.
Der volle Inhalt der QuelleAthreya, Arjun P., und Patrick Tague. „Network self-organization in the Internet of Things“. In 2013 IEEE International Workshop of Internet-of-Things Networking and Control (IoT-NC). IEEE, 2013. http://dx.doi.org/10.1109/iot-nc.2013.6694050.
Der volle Inhalt der QuelleSingh, Meena, M. A. Rajan, V. L. Shivraj und P. Balamuralidhar. „Secure MQTT for Internet of Things (IoT)“. In 2015 Fifth International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2015. http://dx.doi.org/10.1109/csnt.2015.16.
Der volle Inhalt der QuelleBorkar, Suresh, und Himangi Pande. „Application of 5G next generation network to Internet of Things“. In 2016 International Conference on Internet of Things and Applications (IOTA). IEEE, 2016. http://dx.doi.org/10.1109/iota.2016.7562769.
Der volle Inhalt der QuelleSahlmann, Kristina, Thomas Scheffler und Bettina Schnor. „Ontology-driven Device Descriptions for IoT Network Management“. In 2018 Global Internet of Things Summit (GIoTS). IEEE, 2018. http://dx.doi.org/10.1109/giots.2018.8534569.
Der volle Inhalt der QuelleVreca, Jure, Iva Ivanov, Gregor Papa und Anton Biasizzo. „Detecting Network Intrusion Using Binarized Neural Networks“. In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). IEEE, 2021. http://dx.doi.org/10.1109/wf-iot51360.2021.9595961.
Der volle Inhalt der QuelleRamachandra, Manjunath. „IoT solution for scheduling in transport network“. In 2016 International Conference on Internet of Things and Applications (IOTA). IEEE, 2016. http://dx.doi.org/10.1109/iota.2016.7562746.
Der volle Inhalt der QuelleSingh, Rashmi, Rajesh Mehra und Lalita Sharma. „Design of Kalman filter for wireless sensor network“. In 2016 International Conference on Internet of Things and Applications (IOTA). IEEE, 2016. http://dx.doi.org/10.1109/iota.2016.7562696.
Der volle Inhalt der QuelleHe, Weiwei, Shuang-Hua Yang, Lili Yang und Ping Li. „In-network data processing architecture for energy efficient wireless sensor networks“. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015. http://dx.doi.org/10.1109/wf-iot.2015.7389070.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Internet of Things Network (IoTN)"
Symington, Susan, William Polk und Murugiah Souppaya. Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management (Draft). Gaithersburg, MD: National Institute of Standards and Technology, September 2020. http://dx.doi.org/10.6028/nist.cswp.09082020-draft.
Der volle Inhalt der QuellePhillips, Paul. The Application of Satellite-based Internet of Things for New Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Januar 2024. http://dx.doi.org/10.4271/epr2024001.
Der volle Inhalt der QuelleDodson, Donna, Douglas Montgomery, Tim Polk, Mudumbai Ranganathan, Murugiah Souppaya, Steve Johnson, Ashwini Kadam et al. Securing Small-Business and Home Internet of Things (IoT) Devices: Mitigating Network-Based Attacks Using Manufacturer Usage Description (MUD). National Institute of Standards and Technology, Mai 2021. http://dx.doi.org/10.6028/nist.sp.1800-15.
Der volle Inhalt der QuelleGarcía Zaballos, Antonio, Maribel Dalio, Jesús Garran, Enrique Iglesias Rodriguez, Pau Puig Gabarró und Ricardo Martínez Garza Fernández. Estructuración de un centro de operación de redes (NOC). Banco Interamericano de Desarrollo, Oktober 2022. http://dx.doi.org/10.18235/0004520.
Der volle Inhalt der QuelleWatrobski, Paul, Murugiah Souppaya, Joshua Klosterman und William Barker. Methodology for Characterizing Network Behavior of Internet of Things Devices. National Institute of Standards and Technology, Januar 2022. http://dx.doi.org/10.6028/nist.ir.8349-draft.
Der volle Inhalt der QuelleRuvinsky, Alicia, Timothy Garton, Daniel Chausse, Rajeev Agrawal, Harland Yu und Ernest Miller. Accelerating the tactical decision process with High-Performance Computing (HPC) on the edge : motivation, framework, and use cases. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42169.
Der volle Inhalt der QuelleVidea, Aldo, und Yiyi Wang. Inference of Transit Passenger Counts and Waiting Time Using Wi-Fi Signals. Western Transportation Institute, August 2021. http://dx.doi.org/10.15788/1715288737.
Der volle Inhalt der Quelle