Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Internal recycling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Internal recycling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Internal recycling"
Li, Chao, J. Douglas Way, Thomas F. Fuerst und Colin A. Wolden. „Direct internal recycling fractions approaching unity“. Fusion Engineering and Design 209 (Dezember 2024): 114705. http://dx.doi.org/10.1016/j.fusengdes.2024.114705.
Der volle Inhalt der QuelleRivera-Molina, Félix E., Zhiqun Xi, Elena Reales, Bryan Wang und Derek Toomre. „Exocyst complex mediates recycling of internal cilia“. Current Biology 31, Nr. 24 (Dezember 2021): 5580–89. http://dx.doi.org/10.1016/j.cub.2021.09.067.
Der volle Inhalt der QuelleRipl, W. „INTERNAL PHOSPHORUS RECYCLING MECHANISMS IN SHALLOW LAKES“. Lake and Reservoir Management 2, Nr. 1 (Januar 1986): 138–42. http://dx.doi.org/10.1080/07438148609354616.
Der volle Inhalt der QuelleJohnson, J. R., und D. W. Dunford. „On the Use of Non-Recycling and Recycling Compartment Models in Internal Dosimetry“. Radiation Protection Dosimetry 22, Nr. 4 (01.04.1988): 273–76. http://dx.doi.org/10.1093/oxfordjournals.rpd.a080118.
Der volle Inhalt der QuelleWysokińska, Zofia. „Completion of the Common Internal Market of Recycling in the EU - Position of New Member States“. Comparative Economic Research. Central and Eastern Europe 13, Nr. 4 (23.02.2011): 47–59. http://dx.doi.org/10.2478/v10103-009-0045-0.
Der volle Inhalt der QuelleKingsley-Omoyibo, Q. A. „Comparative analysis of waste reduction methods for sustainable manufacturing systems using concurrent triangulation model“. Nigerian Journal of Technology 39, Nr. 3 (16.09.2020): 844–52. http://dx.doi.org/10.4314/njt.v39i3.26.
Der volle Inhalt der QuelleNoyez, Luc, und Leon K. Lacquet. „Recycling of the internal mammary artery in coronary reoperation“. Annals of Thoracic Surgery 55, Nr. 3 (März 1993): 597–99. http://dx.doi.org/10.1016/0003-4975(93)90258-j.
Der volle Inhalt der QuelleFukumori, K., M. Mouri, N. Sato, H. Okamoto und M. Matsushita. „Continuous Recycling of Vulcanisates“. International Polymer Science and Technology 28, Nr. 6 (Juni 2001): 5–11. http://dx.doi.org/10.1177/0307174x0102800601.
Der volle Inhalt der QuellePadrón, David, Renee D. Tall und Michael G. Roth. „Phospholipase D2 Is Required for Efficient Endocytic Recycling of Transferrin Receptors“. Molecular Biology of the Cell 17, Nr. 2 (Februar 2006): 598–606. http://dx.doi.org/10.1091/mbc.e05-05-0389.
Der volle Inhalt der QuelleProvoost, Abraham P. „Does Angiotensin Receptor Recycling Regulate Blood Pressure?“ Hypertension 48, Nr. 3 (September 2006): 370–71. http://dx.doi.org/10.1161/01.hyp.0000237967.09258.0c.
Der volle Inhalt der QuelleDissertationen zum Thema "Internal recycling"
Brahmakulam, jacob Dany Paul, und Gustaf Johannesson. „Analyse and Improve Internal Water Treatment System at STENA Recycling : Master's Programme in Mechanical Engineering“. Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-37052.
Der volle Inhalt der QuelleThomas, Marc Merlin. „The effects of defoliation on seasonal growth dynamics, the importance of internal nitrogen-recycling and the availability of soil nutrients: implications for the invasive potential of Buddleia davidii (Franch.)“. Thesis, University of Canterbury. Biological Sciences, 2007. http://hdl.handle.net/10092/1477.
Der volle Inhalt der QuelleBoukortt, Nour El Imene. „Biogéochimie d’un estuaire soumis aux hypoxies : processus de recyclage benthique des nutriments et des métaux associés dans la Loire“. Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0034.
Der volle Inhalt der QuelleHypoxia has become a widespread issue during the 20th century. An excessive supply of nutrients promotes organic matter production and its degradation causes a decline in oxygenation that can reach critical levels for living organisms. In macrotidal estuaries such as the Loire, oxyegn demand is enhanced in the turbidity maximum zone (TMZ), a key feature of these systems. TMZ acts as a heterotrophic reactor, generating a local oxygen demand.In addition, the Loire has a long history of nutrient enrichment. The inherited stock in the sediments may have hindered restoration despite the reduction in upstream inputs, due to the flow of nutrients from the sediments into the water column. The aim of this work is to understand the benthic--pelagic coupling that maintenans hypoxia. After characterising the dynamics of oxyegn and nutrients in the water, this work assessed the dynamics of nutrient remobilisation processes by sediments, and modelled its interactions with the water column in order to produce an estimation of oxyegn consumption and nutrient recyclng in different estuarine areas. The results show that hydrodynamic conditions, in particular river flow and TMZ position, play a key role in regulating nutrient exchange. This study presents a model that offers a new quantification of nutrient recycling in the Loire. The results highlight the need for integrated management approaches to restore water quality in the estuary
Briand, Axel. „Étude d’un procédé de délamination en milieu CO2 supercritique pour le recyclage de modules photovoltaïques“. Thesis, Montpellier, Ecole nationale supérieure de chimie, 2022. http://theses.enscm.fr/interne/ENSCM_2022_BRIAND.pdf.
Der volle Inhalt der QuelleThe volume of end-of-life photovoltaic panels to be managed will increase considerably over the next decade. In the context of an environmentally friendly circular economy, it is becoming more than necessary to develop efficient recycling processes. In this context, a delamination process using supercritical CO2 was studied for the recycling of end-of-life photovoltaic modules. The process studied in this thesis consists of a CO2 absorption phase within the encapsulating polymer, ethylene vinyl acetate, at a pressure level followed by a rapid depressurization leading to the foaming of the ethylene vinyl acetate. This foaming phenomenon leads to a loss of adhesion at the interfaces of the foamed polymer. This thesis proposes to study the phenomenology of each step. For this purpose, a coupling between a high-pressure cell and an optical device was used to allow in-situ observations of bubble formation and polymer expansion. Based on this understanding, the use of adapted operating parameters demonstrated the potentiality of the process for the complete delamination of photovoltaic modules for the specific recycling of each of its components
Belfqueh, Sahar. „Développement d’un procédé éco-compatible de recyclage des terres rares issues des aimants permanents“. Thesis, Montpellier, Ecole nationale supérieure de chimie, 2022. http://theses.enscm.fr/interne/ENSCM_2022_BELFQUEH.pdf.
Der volle Inhalt der QuelleRare earth elements (REEs) are omnipresent in high technology devices (smartphones, computers…) and are increasingly used in green technologies (wind power turbines, electric vehicles…). Due to their importance, these metals are considered critical for Europe, which has very few primary deposits. Access to these REEs can be considered through the recycling of end-of-life products, in particular through NdFeB or SmCo permanent magnets, which represent 37%, by weight, of the REEs market.In this context, this thesis studies the recycling of REEs, especially Nd, Pr and Dy from NdFeB permanent magnets, found in hard disk drives, through “eco-compatible” hydrometallurgical routes considering the use of organic acids in the leaching process as alternatives to the mineral acids, and the use of a diglycolamide (N,N,N′,N′‐Tetraoctyl diglycolamide - TODGA) as the extracting molecule as an alternative to organophosphorus compounds.Multiparametric studies were realized in order to evaluate the selective recovery of REEs from other elements present in these magnets, in particular iron.Thus, from the results obtained, two alternative methods are proposed.The first process consists in an oxidative roasting of the NdFeB magnet powder followed by two selective leaching steps that allow, after the steps of precipitation and calcination, the separation of Didymium oxide (Nd2O3. Pr2O3), dysprosium oxide (Dy2O3) and iron oxide (Fe2O3) which is non-leachable in acetic acid. The feasibility of this process has been demonstrated on synthetic mixtures of oxides having the same composition as an oxidized NdFeB magnet powder (leaching> 95%, oxide purity> 99.8%). However, the oxidative roasting conditions must be further optimized in order to reproduce the same results on the real NdFeB magnet powder.The second process starts with the complete leaching of the non-roasted NdFeB magnet powder followed by a solvent extraction step using the extracting molecule TODGA. Thereby, a two-stage solvent extraction allowed the extraction of all REEs (Nd, Pr and Dy) with excellent selectivity against other elements present in the acetic acid leachate (Fe, B, Co and Ni). The quantitative stripping of all extracted REEs was possible using an EDTA solution. In addition, a multi-stage solvent extraction, using TODGA, followed by a stripping step using water allowed the separation of Didymium and dysprosium
Jansson, J. P. (Jussi-Pekka). „A stabilized multi-channel CMOS time-to-digital converter based on a low frequency reference“. Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789514299322.
Der volle Inhalt der QuelleTiivistelmä Väitöskirjatyön tavoitteena oli parantaa CMOS-aika-digitaalimuuntimien suorituskykyä ja käytettävyyttä. Muuntimen ominaisuuksia kehitettiin erityisesti laseretäisyysmittauksen tarpeita ajatellen, missä millimetritason mittaustarkkuus laajalla mittausaluella edellyttää aika-digitaalimuuntimelta pikosekuntitason tarkkuutta mikrosekuntien mittausalueella. Stabiilius prosessiparametri-, jännite- ja lämpötilavaihteluita vastaan, useat mittauskanavat, useat mittausmoodit, korkea integraatioaste, standardoidut liitäntäväylät ja helppo käytettävyys olivat erityisesti kehityksen kohteina. Suunniteltu mittausarkkitehtuuri koostuu laskurista ja kaksitasoisesta ajoitussignaali-interpolaattorista. Laskuri laskee kokonaiset referenssikellojaksot ajoitussignaalien välillä ja työssä kehitetty referenssiä kierrättävä viivelinjarakenne rekistereineen interpoloi ajoitussignaalien paikat referenssikellojaksojen sisältä. Referenssinkierrätystekniikka hyödyntää lyhyttä viivelinjaa useampaan kertaan kellojakson aikana, mikä minimoi epälineaarisuuden interpoloinnissa. Sama rakenne mahdollistaa myös MHz-tason referenssitaajuuden, jolloin matalataajuista kidettä voidaan käyttää referenssilähteenä. Toinen interpolointitaso koostuu rinnakkaisista kapasitanssiskaalatuista viive-elementeistä, mitkä mahdollistavat alle porttiviiveen mittausresoluution. Rinnakkaisessa rakenteessa elementtien epälineaarisuudet eivät summaudu, mikä mahdollistaa pikosekuntitason mittaustarkkuuden. Väitöskirjatyössä suunniteltiin ja toteutettiin neljä aikavälinmittauspiiriä käyttäen 0,35 µm CMOS-teknologiaa, joista viimeisin, 7-kanavainen muunnin kykenee mittaamaan aikavälin useampaan pulssiin yhdellä kertaa sekä voi selvittää samalla pulssien leveydet tai nousuajat. Laseretäisyysmittauksessa monikanavaisuutta voidaan käyttää kun useita kaikuja lähetetystä pulssista saapuu vastaanottimeen sekä kompensoimaan mittauksessa esiintyviä muita virhelähteitä. Käytettäessä 20 MHz:n kidettä referenssilähteenä muunnin saavuttaa alle 9 ps:n interpolointiresoluution ja tarkkuuden ilman epälineaarisuudenkorjaustaulukoita. Työ osoittaa, että edullisella CMOS-teknologialla voidaan toteuttaa monipuolinen ja erittäin suorituskykyinen aika-digitaalimuunnin
L'Heureux, Zara Elisabeth. „Repurposing mass-produced internal combustion engines: Quantifying the value and use of low-cost internal combustion piston engines for modular applications in energy and chemical engineering industries“. Thesis, 2017. https://doi.org/10.7916/D81N8CPF.
Der volle Inhalt der Quelle„A novel internal binding motif in the CFTR C-terminus enhances EBP50 multimerization and facilitates endocytic recycling“. THE JOHNS HOPKINS UNIVERSITY, 2007. http://pqdtopen.proquest.com/#viewpdf?dispub=3267878.
Der volle Inhalt der Quelle„Chartopolis - A Self Driving Car Test Bed“. Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/624055.
Der volle Inhalt der QuelleBücher zum Thema "Internal recycling"
Hardie, Colin Alexander. In-plant comparison of internal and external spargers for flotation column deinking. Montréal, Qué: [s.n.]., 1998.
Den vollen Inhalt der Quelle findenTettelbach, Clayton G. Recycling Decision Support System: Design and development of a Web-based DSS. Monterey, Calif: Naval Postgraduate School, 1997.
Den vollen Inhalt der Quelle findenTom, Anderson. MySpace/OurPlanet: Change Is Possible. New York, USA: Collins, 2008.
Den vollen Inhalt der Quelle findenWaste and Wealth: An Ethnography of Labor, Value, and Morality in a Vietnamese Recycling Economy. Oxford University Press, Incorporated, 2018.
Den vollen Inhalt der Quelle findenWright, A. G. The optical interface to PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0003.
Der volle Inhalt der QuelleGreat Britain: Parliament: House of Commons: European Scrutiny Committee und Jimmy Hood. Twenty-sixth report of Session 2005-06: Documents considered by the Committee on 26 April 2006, including, waste prevention and recycling; strategy for sustainable, competitive and secure energy; an internal market for services; future European Union finances; own resources, report, together with formal Minutes. Stationery Office, The, 2006.
Den vollen Inhalt der Quelle findenVincent, Julian. Biomimetic materials. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0010.
Der volle Inhalt der QuelleKuk-kongyuji sintʻak pŏpche kaesŏn pangan yŏnʼgu. Sŏul Tʻŭkpyŏlsi: Hanʼguk Pŏpche Yŏnʼguwŏn, 2006.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Internal recycling"
Kudelska, Izabela, und Monika Kosacka-Olejnik. „How to Assess Internal Transport in Terms of Sustainability in the Recycling Industry?—Case Study“. In EcoProduction, 127–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-33857-1_7.
Der volle Inhalt der QuelleBorner, Daniel, und Barbara Eisenbart. „Circular Economy in Practice: The Benefits of Collaboration for Securing Material Flow in a US Study“. In Sustainable Business Development, 231–47. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78361-6_11.
Der volle Inhalt der QuelleTamke, Martin, Tom Svilans, Johannes A. J. Huber, Wendy Wuyts und Mette Ramsgaard Thomsen. „Non-Destructive Assessment of Reclaimed Timber Elements Using CT Scanning: Methods and Computational Modelling Framework“. In Lecture Notes in Civil Engineering, 1275–88. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-69626-8_107.
Der volle Inhalt der QuelleFormato, Enrico. „New Urbanization Phenomena and Potential Landscapes: Rhizomatic Grids and Asymmetrical Clusters“. In Regenerative Territories, 135–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78536-9_8.
Der volle Inhalt der QuelleKüfeoğlu, Sinan. „Emerging Technologies“. In Emerging Technologies, 41–190. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07127-0_2.
Der volle Inhalt der QuelleArputharaj, J. Vijay, Joanna Mariam Varkey, Rishi Vagadia und Ramesh Kumar Ayyasamy. „Leveraging Intelligent Systems and the AIoT/IIoT for Enhanced Waste Management and Recycling Efficiency“. In Intelligent Systems and Industrial Internet of Things for Sustainable Development, 266–91. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781032642789-13.
Der volle Inhalt der QuelleKozderka, Michal, Bertrand Rose, Vladimír Kočí, Emmanuel Caillaud und Nadia Bahlouli. „High Impact Polypropylene Recycling – Mechanical Resistance and LCA Case Study with Improved Efficiency by Preliminary Sensitivity Analysis“. In Product Lifecycle Management in the Era of Internet of Things, 541–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33111-9_49.
Der volle Inhalt der QuelleTrubina, Nika, Gerald Leindecker, Rand Askar, Aikaterina Karanafti, Marta Gómez-Gil, Teresa Blázquez, Bengü Güngör und Luís Bragança. „Digital Technologies and Material Passports for Circularity in Buildings: An In-Depth Analysis of Current Practices and Emerging Trends“. In Lecture Notes in Civil Engineering, 690–99. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57800-7_64.
Der volle Inhalt der QuelleDziike, Farai, Phylis Makurunje und Refilwe Matshitse. „Biomass Electrospinning: Recycling Materials for Green Economy Applications“. In Electrospinning - Material Technology of the Future [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103096.
Der volle Inhalt der QuelleÅkesson, Jennie, Angelina Sundström, Koteshwar Chirumalla und Glenn Johansson. „Exploring Challenges to Design Product-Service Systems in SMEs – A Case Study“. In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220126.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Internal recycling"
Uday, Vikram, und Sujit Jogwar. „Optimal Design of a Biogas-based Renewable Power Production System“. In Foundations of Computer-Aided Process Design, 912–19. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.194065.
Der volle Inhalt der QuelleSpyridis, Yannis, Vasileios Argyriou, Antonios Sarigiannidis, Panagiotis Radoglou und Panagiotis Sarigiannidis. „Autonomous AI-enabled Industrial Sorting Pipeline for Advanced Textile Recycling“. In 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), 455–61. IEEE, 2024. http://dx.doi.org/10.1109/dcoss-iot61029.2024.00073.
Der volle Inhalt der QuelleYang, Chengwei, XiangQiang Meng, CuiLing Zhu, MingYuan Hu, Xin Ding, YunPeng Wang, TanTan Liang und Yingbin Wang. „Multi-temporal time window based path optimization for smart recycling bin removal vehicles“. In 2024 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), 73–78. IEEE, 2024. https://doi.org/10.1109/iiki65561.2024.00022.
Der volle Inhalt der QuelleVimal Kumar, M. Guru, Madde Kumar, K. Narayana Rao, P. Syamala Rao, Arepalli Tirumala und Eswar Patnala. „Advanced YOLO-Based Trash Classification and Recycling Assistant for Enhanced Waste Management and Sustainability“. In 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI), 1238–46. IEEE, 2024. http://dx.doi.org/10.1109/icoici62503.2024.10696214.
Der volle Inhalt der QuelleEveloy, Vale´rie. „Anode Gas and Steam Recycling for Internal Methane Reforming SOFCs: Analysis of Carbon Deposition“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11012.
Der volle Inhalt der QuelleAsad, Usman, Ming Zheng, David S. K. Ting und Graham T. Reader. „Effect of Internal Exhaust Gas Recycling on n-Heptane HCCI Combustion“. In ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/icef2005-1245.
Der volle Inhalt der QuelleMércia Franca de Carvalho, Rebeka Oliveira Domingues, Andréa Gonçalves de Sousa, Ricardo Artur Sanguinetti Ferreira und Yogendra Prasad Yadava. „Waste recycling of aluminum anodizing process for internal coating of oil refining pipes“. In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-2445.
Der volle Inhalt der QuelleEveloy, Valerie, und Merwan Daoudi. „Numerical Investigation of the Effect of Fuel Recycling on the Susceptibility of a Direct Internal Methane Reforming SOFC to Carbon Deposition“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67870.
Der volle Inhalt der QuellePeralta Zurita, Diana Belén, Jaime Vinicio Molina Osejos, Edilberto Antonio Llanes Cedeño, Gustavo Adolfo Moreno Jiménez und Roxana Elizabeth Valencia Navarrete. „Mechanical and thermal characterization of nylon resulting from tire recycling for internal vehicle panels“. In VIII Congreso Internacional de Investigación REDU. Medwave, 2022. http://dx.doi.org/10.5867/medwave.2022.s1.ci72.
Der volle Inhalt der QuelleChen, Xun, Yuxin Jiang und Xu Li. „Design of waste plastic recycling facilities based on campus scenarios“. In Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004546.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Internal recycling"
Einarsson, Rasmus. Nitrogen in the food system. TABLE, Februar 2024. http://dx.doi.org/10.56661/2fa45626.
Der volle Inhalt der Quelle