Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interfacial degradation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interfacial degradation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interfacial degradation"
Loh, W. K., A. D. Crocombe, M. M. Abdel Wahab und I. A. Ashcroft. „Modelling interfacial degradation using interfacial rupture elements“. Journal of Adhesion 79, Nr. 12 (Dezember 2003): 1135–60. http://dx.doi.org/10.1080/714906160.
Der volle Inhalt der QuelleTurak, Ayse. „Interfacial degradation in organic optoelectronics“. RSC Advances 3, Nr. 18 (2013): 6188. http://dx.doi.org/10.1039/c2ra22770c.
Der volle Inhalt der QuelleCrafton, Matthew J., Zijian Cai, Tzu-Yang Huang, Zachary M. Konz, Ning Guo, Wei Tong, Gerbrand Ceder und Bryan D. McCloskey. „Dialing in the Voltage Window: Reconciling Interfacial Degradation and Cycling Performance Decay with Cation-Disordered Rocksalt Cathodes“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 636. http://dx.doi.org/10.1149/ma2023-012636mtgabs.
Der volle Inhalt der QuelleChen, Yan Hua, und Qing Jie Zhu. „Numerical Simulation of Interfacial Bonding Degradation of Composites under Two-Stage Loading“. Materials Science Forum 575-578 (April 2008): 869–74. http://dx.doi.org/10.4028/www.scientific.net/msf.575-578.869.
Der volle Inhalt der QuellePerelmuter, M. „Kinetics of interfacial crack bridged zone degradation“. Journal of Physics: Conference Series 451 (17.07.2013): 012012. http://dx.doi.org/10.1088/1742-6596/451/1/012012.
Der volle Inhalt der QuelleJongwoo Park und D. G. Harlow. „Interfacial degradation of epoxy coated silicon nitride“. IEEE Transactions on Components and Packaging Technologies 25, Nr. 3 (September 2002): 470–77. http://dx.doi.org/10.1109/tcapt.2002.803651.
Der volle Inhalt der QuelleLee, Sunyoung, Hayoung Park, Jungwon Park und Kisuk Kang. „Crystal Orientation-Dependent Interface Compatibility in the Oxide Composite Cathode by in Situ Heating Transmission Electron Microscopy“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 796. http://dx.doi.org/10.1149/ma2023-024796mtgabs.
Der volle Inhalt der QuelleDesta, Gidey Bahre Bahre, und Yao Jane Hsu (b)*. „Using Synchrotron Techniques, Investigation of Electrochemical Interfaces in Ni-Rich NMC and Sulfide Electrolytes in All-Solid-State Lithium Metal Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 7 (09.10.2022): 2610. http://dx.doi.org/10.1149/ma2022-0272610mtgabs.
Der volle Inhalt der QuelleMorey, Madison, Andrew Cannon, Trevor Melsheimer und Emily Ryan. „(Invited) The Importance of Modeling Interfacial Phenomena in Electrochemical Systems“. ECS Meeting Abstracts MA2023-01, Nr. 25 (28.08.2023): 1649. http://dx.doi.org/10.1149/ma2023-01251649mtgabs.
Der volle Inhalt der QuelleBersuker, G., J. Barnett, N. Moumen, B. Foran, C. D. Young, P. Lysaght, J. Peterson, B. H. Lee, P. M. Zeitzoff und H. R. Huff. „Interfacial Layer-Induced Mobility Degradation in High-kTransistors“. Japanese Journal of Applied Physics 43, Nr. 11B (15.11.2004): 7899–902. http://dx.doi.org/10.1143/jjap.43.7899.
Der volle Inhalt der QuelleDissertationen zum Thema "Interfacial degradation"
Keat, Loh Wei. „Modelling interfacial degradation in adhesively bonded structures“. Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/798102/.
Der volle Inhalt der QuelleChen, Ping. „Interfacial degradation of carbon fibre reinforced polyetheretherketone, PEEK“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ29373.pdf.
Der volle Inhalt der QuelleLiljedahl, Carl David Mortimer. „Modelling the interfacial degradation in adhesively bonded joints“. Thesis, University of Surrey, 2006. http://epubs.surrey.ac.uk/773028/.
Der volle Inhalt der QuelleBastidas, Erazo Pablo Daniel. „Degradation of composite insulators at material interfaces“. Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/degradation-of-composite-insulators-at-material-interfaces(69477a7e-9cc1-496e-a527-4bb64488493d).html.
Der volle Inhalt der QuelleGreenbank, William. „Interfacial stability and degradation in organic photovoltaic solar cells“. Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0338/document.
Der volle Inhalt der QuelleOrganic photovoltaic (OPV) solar cells show great promise but suffer from short operating lifetimes. This study examines the role that the selection of materials for the hole extraction interface in inverted OPV devices plays in determining the lifetime of a device. In the first part of the study, the effects of thermal degradation were examined. It was found that devices containing MoO3 HTLs and silver top electrodes exhibit an open-circuit voltage (VOC)/fill factor (FF)-driven mechanism. Physical characterisation experiments showed that, with heating, the silver electrode undergoes de-wetting. With thin electrodes this can result in the catastrophic failure of the device. A fracture analysis study found that silver-containing devices experience an increase in adhesion of their top layers to the active layer due to interdiffusion between the layers. This interdiffusion may be related to the loss of VOC and FF in Ag/MoO3 devices through diffused species forming charge traps in the active layer. In the second part of the study, the effects of photodegradation in different atmospheres were studied. Some material-dependent effects were observed when the devices were aged in an inert atmosphere, including variations in projected lifetime. The effect of oxygen was to greatly accelerate degradation, and remove any of the material-dependence observed in the inert experiment, while humidity led to a substantial increase in the degradation rate of devices containing PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate). This study underlines the importance of considering device lifetime in device design, and choosing materials to minimise degradation
Li, Junhong. „Elastic - plastic interfacial crack problems“. Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297517.
Der volle Inhalt der QuelleLemire, Heather M. „Degradation of Transparent Conductive Oxides: Mechanistic Insights and Interfacial Engineering“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1386325661.
Der volle Inhalt der QuelleFitzpatrick, Matthew F. „The interfacial chemistry and environmental degradation of adhesively bonded galvanised steel“. Thesis, University of Surrey, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322539.
Der volle Inhalt der QuelleCumpston, Brian Hylton. „Bulk and interfacial degradation of polymers used for electronic and photonic applications“. Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10634.
Der volle Inhalt der QuelleWu, Liberty Tse Shu. „On the degradation mechanisms of thermal barrier coatings : effects of bond coat and substrate“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/on-the-degradation-mechanisms-of-thermal-barrier-coatings-effects-of-bond-coat-and-substrate(ea6923cc-7d8f-4712-a964-fe625d421544).html.
Der volle Inhalt der QuelleBücher zum Thema "Interfacial degradation"
Chen, Ping. Interfacial degradation of carbon fibre reinforced polyetheretherketone, PEEK. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Den vollen Inhalt der Quelle findenKaya, Figen. Effects of increased interfacial strength on the fatigue crack growth resistance, crack opening displacements and interfacial and fibre strength degradation in a Tiß 21S/SC6 composite. Birmingham: University of Birmingham, 2003.
Den vollen Inhalt der Quelle findenMirkhani, Koorosh. Characterization of interfacial degradation in adhesive joints using EMAT's. 2004.
Den vollen Inhalt der Quelle findenFurst, Eric M., und Todd M. Squires. Microrheology applications. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0010.
Der volle Inhalt der QuelleBuchteile zum Thema "Interfacial degradation"
Zhao, Yi-Zhou, und Qian-Qian Yu. „Degradation of Interfacial Behaviour Between AFRP and Concrete Under Sulfate Attack“. In Lecture Notes in Civil Engineering, 337–44. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-3362-4_27.
Der volle Inhalt der QuelleRokhlin, S. I., B. Li und A. I. Lavrentyev. „Ultrasonic Evaluation of Interfacial Properties in Adhesive Joints: Evaluation of Environmental Degradation“. In Review of Progress in Quantitative Nondestructive Evaluation, 1523–30. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2848-7_195.
Der volle Inhalt der QuelleKhaleel, MA, EV Stephens und J. Stevenson. „Interfacial Stresses and Degradation of Oxide Scale and Substrate Interface at High Temperature“. In TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), 351–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119090427.ch37.
Der volle Inhalt der QuelleKhaleel, M. A., E. V. Stephens und J. Stevenson. „Interfacial Stresses and Degradation of Oxide Scale and Substrate Interface at High Temperature“. In Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), 351–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48766-3_37.
Der volle Inhalt der QuelleYavas, Denizhan, Xu Shang und Ashraf F. Bastawros. „Contamination-Induced Degradation/Enhancement of Interfacial Toughness and Strength in Polymer-Matrix Composite Interfaces“. In Fracture, Fatigue, Failure and Damage Evolution, Volume 7, 73–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62831-8_10.
Der volle Inhalt der QuelleWu, L. T., R. T. Wu, T. Osada, K. I. Lee, M. Bai und P. Xiao. „Effect of Bond Coat and Substrate Chemistry on the Interfacial Degradation of Thermal Barrier Coatings“. In Superalloys 2016, 167–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119075646.ch19.
Der volle Inhalt der QuelleArenz, M., und J. Quinson. „Degradation of Metal Clusters and Nanoparticles Under Electrochemical Control“. In Encyclopedia of Interfacial Chemistry, 434–41. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-409547-2.12939-7.
Der volle Inhalt der QuelleFoulk, J. W., K. L. E. Helms und D. H. Allen. „A computational finite element analysis for predicting the effects of environmental degradation on life in metal matrix composites“. In Damage and Interfacial Debonding in Composites, 29–44. Elsevier, 1996. http://dx.doi.org/10.1016/s0922-5382(96)80003-1.
Der volle Inhalt der QuelleMohammed, Mohammed, und Rozyanty Rahman. „Utilizing Photocatalysts in Reducing Moisture Absorption in Composites of Natural Fibers“. In Photocatalysts - New Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106543.
Der volle Inhalt der QuelleKadian, Sachin, Manjinder Singh und Gaurav Manik. „Graphene Based Hybrid Nanocomposites for Solar Cells“. In Current and Future Developments in Nanomaterials and Carbon Nanotubes, 61–77. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050714122030007.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interfacial degradation"
Angst, Ueli M. „Corrosion of steel in porous media–role of the interfacial zone“. In 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09889.
Der volle Inhalt der QuelleSinha, Archana, Stephanie L. Moffitt, Katherine Hurst, Jiadong Qian, David C. Miller, Peter Hacke und Laura T. Schelhas. „Interfacial Characterization of Positive Bias Voltage Degradation in PV Modules“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300934.
Der volle Inhalt der QuelleMa, Chang-Qi, Bowen Liu, Yunfei Han und Qun Luo. „Interfacial Photon Degradation of High Performance Polymer:Non-fullerene Solar Cells“. In nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.047.
Der volle Inhalt der QuelleBaltazar, A. „Ultrasonic determination of environmental degradation of interfacial properties in adhesive bonds“. In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2002. http://dx.doi.org/10.1063/1.1472925.
Der volle Inhalt der QuelleLee, Wen-Hao, D. S. Liang, W. P. Wang und C. S. Hsiao. „Thermal Degradation and Mass Transport of Underfill Material“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33057.
Der volle Inhalt der QuelleFerguson, Timothy P., und Jianmin Qu. „An Engineering Model for Moisture Degradation of Polymer/Metal Interfacial Fracture Toughness“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73414.
Der volle Inhalt der QuelleMartin, Ina T., Tricia M. Oyster, Lorelle M. Mansfield, Rachael Matthews, Emily B. Pentzer, Roger H. French und Timothy J. Peshek. „Interfacial modifiers for enhanced stability and reduced degradation of Cu(In, Ga)Se2 devices“. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749865.
Der volle Inhalt der QuelleOgata, Kazuma, Yoshinori Takano, Shotaro Yasuda, Yuto Shibayama und Akio Yonezu. „Mechanical Properties and Interfacial Strength of Active Material Layer / Copper Foil of Anode Sheet in Lithium-Ion Battery (LiB)“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113250.
Der volle Inhalt der QuelleBai, M., K. Lee, T. Osada, L. Wu, R. Wu und P. Xiao. „Effect of Bond Coat and Substrate Chemistry on the Interfacial Degradation of Thermal Barrier Coatings“. In Superalloys 2016. The Minerals, Metals & Materials Society, 2016. http://dx.doi.org/10.7449/superalloys/2016/superalloys_2016_167_176.
Der volle Inhalt der QuelleYasuda, N., H. Hisamatsu, H. Ota, K. Iwamoto, K. Tominaga, K. Yamamoto, W. Mizubayashi et al. „Projection of Mobility Degradation in HfAlOx /SiO2 nMOSFET towards the Reduction of Interfacial Oxide Thickness“. In 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.c-1-3.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interfacial degradation"
Fenning, David, Rishi Kumar, Guillaume von Gastrow, Mariana Bertoni, April Jeffries, Nicholas Theut, Maria Chan und Arun Mannodi Kanakkithodi. Understanding and Overcoming Water-induced Interfacial Degradation in Si Modules (Final Technical Report). Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1773388.
Der volle Inhalt der Quelle