Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interfaces (Physical sciences)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interfaces (Physical sciences)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interfaces (Physical sciences)"
Thomas, John M. „Advanced Catalysts: Interfaces in the physical and biological sciences“. Advanced Materials 1, Nr. 8-9 (1989): 251–60. http://dx.doi.org/10.1002/adma.19890010803.
Der volle Inhalt der QuelleThomas, John M. „Advanced Catalysts: Interfaces in the Physical and Biological Sciences“. Angewandte Chemie 101, Nr. 8 (13.01.2006): 1105–14. http://dx.doi.org/10.1002/ange.19891010849.
Der volle Inhalt der QuelleThomas, John M. „Advanced Catalysts: Interfaces in the Physical and Biological Sciences“. Angewandte Chemie International Edition in English 28, Nr. 8 (August 1989): 1079–88. http://dx.doi.org/10.1002/anie.198910791.
Der volle Inhalt der QuelleSarikaya, Mehmet. „Organic-inorganic interfaces in biological composites“. Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 426–27. http://dx.doi.org/10.1017/s0424820100169869.
Der volle Inhalt der Quellevan den Hoven, Elise, und Ali Mazalek. „Grasping gestures: Gesturing with physical artifacts“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 25, Nr. 3 (11.07.2011): 255–71. http://dx.doi.org/10.1017/s0890060411000072.
Der volle Inhalt der QuelleMorey, Julien, Jean-Bernard Ledeuil, Lénaïc Madec und Hervé Martinez. „Methodological developments to expose and analyse buried interfaces in lithium solid-state batteries using ex situ, in situ and operando cycling“. EPJ Web of Conferences 273 (2022): 01007. http://dx.doi.org/10.1051/epjconf/202227301007.
Der volle Inhalt der QuelleXiao, Jian Zhuang, Qiong Liu, Jiang Tao Du und Chuan Zeng Zhang. „Micro-Damage Mechanisms and Property Fluctuation of Recycled Aggregate Concrete“. Key Engineering Materials 348-349 (September 2007): 61–64. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.61.
Der volle Inhalt der QuelleKitaev, Yu E., A. S. Krylov und T. I. Maksimova. „Soft mode mechanism of the transition into the low-temperature ferroelastic phase in K-=SUB=-3-=/SUB=-Na(CrO-=SUB=-4-=/SUB=-)-=SUB=-2-=/SUB=- crystals“. Физика твердого тела 58, Nr. 12 (2016): 2423. http://dx.doi.org/10.21883/ftt.2016.12.43867.187.
Der volle Inhalt der QuelleBroehan, Jasmin, Nils Kuelper und Frank Thielecke. „Seamless Transitions from Logical to Physical Avionics Architecture Models for Preliminary Aircraft Systems Design“. INCOSE International Symposium 33, Nr. 1 (Juli 2023): 1315–32. http://dx.doi.org/10.1002/iis2.13084.
Der volle Inhalt der QuelleLaouina, Zineb, Lynda Ouchaouka, Mohamed Moussetad, Soumia Mordane und Mohamed Radid. „Remote Lab Experiments in Mechanic: The Compound Pendulum“. International Journal of Online and Biomedical Engineering (iJOE) 19, Nr. 02 (16.02.2023): 23–41. http://dx.doi.org/10.3991/ijoe.v19i02.37061.
Der volle Inhalt der QuelleDissertationen zum Thema "Interfaces (Physical sciences)"
Lee, Long. „Immersed interface methods for incompressible flow with moving interfaces /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/6789.
Der volle Inhalt der QuelleMarmol, Leonardo. „Customized Interfaces for Modern Storage Devices“. FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3165.
Der volle Inhalt der QuelleLeskovar, Michael. „The stability of interfaces between dissimilar materials /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/9728.
Der volle Inhalt der QuelleChen, Chun-Chung. „Understanding avalanche systems through underlying interface dynamics /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/9755.
Der volle Inhalt der QuelleMillner, Amon Daran. „Hook-ups : how youth learn through creating physical computer interfaces“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32508.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 129-130).
The Hook-ups project introduces a new set of tools, materials, and activities intended to support children in creating physical computer input devices for computer programs they write. This project introduces a new approach to learning-through-design by providing opportunities for children to engage in both physical and computational design concurrently. This thesis describes the design of Hook-ups tools and materials, including the development of Scratch Patches - a new puzzle-piece-like set of technological building blocks used to build computer input devices. Also presented are classifications of the types of Hook-ups developed by youth, an analysis of what and how youth learned through Hook-ups design activities, and a roadmap for future work in the area of interaction design for children.
by Amon Daran Millner.
S.M.
Follmer, Sean (Sean Weston). „Dynamic physical affordances for shape-changing and deformable user interfaces“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97973.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 207-222).
The world is filled with tools and devices designed to fit specific needs and goals, and their physical form plays an important role in helping users understand their use. These physical affordances provide products and interfaces with many advantages: they contribute to good ergonomics, allow users to attend to other tasks visually, and take advantage of embodied and distributed cognition by allowing users to offload mental computation spatially. However, devices today include more and more functionality, with increasingly fewer physical affordances, losing many of the advantages in expressivity and dexterity that our hands can provide. My research examines how we can apply shape-changing and deformable interfaces to address the lack of physical affordances in today's interactive products and enable richer physical interaction with general purpose computing interfaces. In this thesis, I introduce tangible interfaces that use their form to adapt to the functions and ways users want to interact with them. I explore two solutions: 1) creating Dynamic Physical Affordances through shape change and 2) user Improvised Physical Affordances through direct deformation and through appropriation of existing objects. Dynamic Physical Affordances can provide buttons and sliders on demand as an application changes, or even allow users to directly manipulate 3D models or data sets through physical handles which appear out of the data. Improvised Physical Affordances can allow users to squeeze, stretch, and deform input devices to fit their needs, creating the perfect game controller, or shaping a mobile phone around their wrist to form a bracelet. Novel technical solutions are needed to enable these new interaction techniques; this thesis describes techniques both for actuation and robust sensing for shape-changing and deformable interfaces. Finally, systems that utilize Dynamic Physical Affordances and Improvised Physical Affordances are evaluated to understand patterns of use and performance. My belief is that shape-changing UI will become increasingly available in the future, and this work begins to create a vocabulary and design space for more general-purpose interaction for shape-changing UI.
by Sean Weston Follmer.
Ph. D.
Sanchez, Erik De Jesus. „Modeling of the Surface Plasmon Resonance (SPR) Effect for a Metal-Semiconductor (M-S) Junction at Elevated Temperatures“. PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4624.
Der volle Inhalt der QuelleWang, Chuandao Charlie, und 王传道. „Organic solar cells towards high efficiency: plasmonic effects and interface engineering“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48329654.
Der volle Inhalt der Quellepublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Maeda, Nobuo. „Phase transitions of long-chain n-alkanes at interfaces“. View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20011203.151921/index.html.
Der volle Inhalt der QuelleFailla, Roberto. „Random growth of interfaces: Statistical analysis of single columns and detection of critical events“. Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4550/.
Der volle Inhalt der QuelleBücher zum Thema "Interfaces (Physical sciences)"
National Research Council (U.S.). Panel on Scientific Interfaces and Technological Applications. Scientific interfaces and technological applications. Washington, D.C: National Academy Press, 1986.
Den vollen Inhalt der Quelle findenBraccini, Muriel, und Michel Dupeux. Mechanics of solid interfaces. London: ISTE, 2012.
Den vollen Inhalt der Quelle findenMartin, Malmsten, Hrsg. Biopolymers at interfaces: Edited by Martin Malmsten. New York: M. Dekker, 1998.
Den vollen Inhalt der Quelle findenHowe, James M. Interfaces in materials: Atomic structure, thermodynamics and kinetics of solid-vapor, solid-liquid and solid-solid interfaces. New York: Wiley, 1997.
Den vollen Inhalt der Quelle findenJ, Feast W., Munro H. S und Richards R. W. 1948-, Hrsg. Polymer surfaces and interfaces II. Chichester: Wiley & Sons, 1993.
Den vollen Inhalt der Quelle findenP, DeMejo Lawrence, Rimai Don und Sharpe Louis H, Hrsg. Fundamentals of adhesion and interfaces. Amsterdam: Gordon & Breach, 1999.
Den vollen Inhalt der Quelle findenColinet, P. Pattern formation at interfaces. Wien: Springer, 2010.
Den vollen Inhalt der Quelle findenD, Möbius, und Miller Reinhard, Hrsg. Novel methods to study interfacial layers. Amsterdam: Elsevier, 2001.
Den vollen Inhalt der Quelle findenBakrim, Hassan. Progress in surface and interface research, 2006. Trivandrum, Kerala, India: Transworld Research Network, 2006.
Den vollen Inhalt der Quelle findenPark, Soojin. Interface science and composites. Amsterdam: Elsevier, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Interfaces (Physical sciences)"
Shukla, Prabodh. „Domains and Interfaces in Random Fields“. In Texts and Readings in Physical Sciences, 141–58. Gurgaon: Hindustan Book Agency, 2012. http://dx.doi.org/10.1007/978-93-86279-51-4_5.
Der volle Inhalt der QuelleSaichev, Alexander I., und Wojbor A. Woyczyński. „Nonlinear Waves and Growing Interfaces: 1-D Burgers–KPZ Models“. In Distributions in the Physical and Engineering Sciences, Volume 2, 229–79. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-0-8176-4652-3_6.
Der volle Inhalt der QuelleWeik, Martin H. „physical interface“. In Computer Science and Communications Dictionary, 1274. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14038.
Der volle Inhalt der QuelleFernando Concha, A., und Osvaldo A. Bascur. „Physical Chemistry of Interfaces“. In The Engineering Science of Mineral Processing, 209–24. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781032614212-5.
Der volle Inhalt der QuelleWeik, Martin H. „Fiber Channel Physical Interface“. In Computer Science and Communications Dictionary, 581. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_6894.
Der volle Inhalt der QuelleTakiue, Takanori, Yoshimune Nonomura und Syuji Fujii. „The Principle and Physical Chemistry of Soft Interface“. In Molecular Soft-Interface Science, 3–25. Tokyo: Springer Japan, 2019. http://dx.doi.org/10.1007/978-4-431-56877-3_1.
Der volle Inhalt der QuelleKobayashi, Toshiki, Motoki Asano, Rikizo Ikuta, Sahin K. Ozdemir und Takashi Yamamoto. „Photonic Quantum Interfaces Among Different Physical Systems“. In Quantum Science and Technology, 197–218. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7_9.
Der volle Inhalt der QuelleJofré, Nicolás, Graciela Rodríguez, Yoselie Alvarado, Jacqueline Fernández und Roberto Guerrero. „Natural User Interfaces: A Physical Activity Trainer“. In Communications in Computer and Information Science, 122–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75214-3_12.
Der volle Inhalt der QuelleTucker, Lewis R., und Michael V. Laric. „Dealing with the Marketing/Physical Distribution Interface“. In Developments in Marketing Science: Proceedings of the Academy of Marketing Science, 389–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16934-7_109.
Der volle Inhalt der QuelleTang, Bing, Zhigeng Pan, ZuoYan Lin und Le Zheng. „PHI: Physics Application Programming Interface“. In Lecture Notes in Computer Science, 390–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11872320_57.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interfaces (Physical sciences)"
„Preface: Emerging Interfaces of Physical Sciences and Technology (EIPT-2019)“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000220.
Der volle Inhalt der Quelle„Committees: Emerging Interfaces of Physical Sciences and Technology (EIPT-2019)“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000473.
Der volle Inhalt der QuelleAguirre, Roberto, Jesus Ruiz-Plancarte und Haris Catrakis. „Physical Thickness of Turbulent Fluid Interfaces: Structure, Variability, and Applications to Aerooptics“. In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-642.
Der volle Inhalt der QuelleAttwood, D., Y. Vladimirsky, D. Kern, W. Meyer-Ilse, J. Kirz, S. Rothman, H. Rarback et al. „X-Ray Microscopy for the Life and Physical Sciences“. In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/swcr.1988.mh274.
Der volle Inhalt der QuelleBehere, Supriya, Bhagawan Deshmukh, Sunil Patil und S. H. Behere. „Rotational temperature of the CaH molecule from the umbral spectrum of sunspots“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0005460.
Der volle Inhalt der QuelleMoghe, Shweta, A. D. Acharya und S. B. Shrivastava. „Study of metal oxide doped polymeric thin films“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0006263.
Der volle Inhalt der QuelleTambe, A., S. Kumbhaj, D. M. Phase, P. K. Sen und P. Sen. „Fiber optic localized surface plasmon resonance sensor for detection of chromium ion impurity in water“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000469.
Der volle Inhalt der QuelleDubey, Priya, und S. Ghosh. „Dispersion characteristics of space charge wave in semiconductor plasma comprising of nanoparticles“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000470.
Der volle Inhalt der QuelleJoshi, H., G. Ahmed, R. K. Pensia und A. K. Patidar. „Electron plasma frequency on Jeans instability in quantum plasma“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000471.
Der volle Inhalt der QuelleMalviya, P. S., und N. Yadav. „Colloidal effects on modulational instability in semiconductor plasma having strain dependent dielectric constant“. In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000472.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interfaces (Physical sciences)"
Perdigão, Rui A. P. New Horizons of Predictability in Complex Dynamical Systems: From Fundamental Physics to Climate and Society. Meteoceanics, Oktober 2021. http://dx.doi.org/10.46337/211021.
Der volle Inhalt der Quelle