Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interfaces de transformation de phase“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interfaces de transformation de phase" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interfaces de transformation de phase"
Farahani, Hussein, Gerrit Zijlstra, Maria Giuseppina Mecozzi, Václav Ocelík, Jeff Th M. De Hosson und Sybrand van der Zwaag. „In Situ High-Temperature EBSD and 3D Phase Field Studies of the Austenite–Ferrite Transformation in a Medium Mn Steel“. Microscopy and Microanalysis 25, Nr. 3 (12.04.2019): 639–55. http://dx.doi.org/10.1017/s143192761900031x.
Der volle Inhalt der QuelleFischer, F. D., N. K. Simha und J. Svoboda. „Kinetics of Diffusional Phase Transformation in Multicomponent Elastic-Plastic Materials“. Journal of Engineering Materials and Technology 125, Nr. 3 (01.07.2003): 266–76. http://dx.doi.org/10.1115/1.1586939.
Der volle Inhalt der QuelleFang, Hui, Qianyu Tang, Qingyu Zhang, Yiming Fan, Shiyan Pan, Markus Rettenmayr und Mingfang Zhu. „Simulation of the Peritectic Phase Transition in Fe-C Alloys“. Materials 15, Nr. 2 (11.01.2022): 537. http://dx.doi.org/10.3390/ma15020537.
Der volle Inhalt der QuelleZhang, Hongliang, Jianqi Xi, Ranran Su, Xuanxin Hu, Jun Young Kim, Shuguang Wei, Chenyu Zhang, Liqun Shi und Izabela Szlufarska. „Enhancing the phase stability of ceramics under radiation via multilayer engineering“. Science Advances 7, Nr. 26 (Juni 2021): eabg7678. http://dx.doi.org/10.1126/sciadv.abg7678.
Der volle Inhalt der QuelleWeatherly, G. C. „Interfaces and precipitation“. Proceedings, annual meeting, Electron Microscopy Society of America 50, Nr. 1 (August 1992): 224–25. http://dx.doi.org/10.1017/s0424820100121521.
Der volle Inhalt der QuelleZhang, Hengzhong, und Jillian F. Banfield. „Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation“. Journal of Materials Research 15, Nr. 2 (Februar 2000): 437–48. http://dx.doi.org/10.1557/jmr.2000.0067.
Der volle Inhalt der QuelleZhang, Wen-Zheng. „Reproducible Orientation Relationships Developed from Phase Transformations—Role of Interfaces“. Crystals 10, Nr. 11 (16.11.2020): 1042. http://dx.doi.org/10.3390/cryst10111042.
Der volle Inhalt der QuelleHowe, James M. „Atomic Structure, Composition, Mechanisms and Dynamics of Transformation Interfaces in Diffusional Phase Transformations“. Materials Transactions, JIM 39, Nr. 1 (1998): 3–23. http://dx.doi.org/10.2320/matertrans1989.39.3.
Der volle Inhalt der QuelleRettenmayr, Markus, Oleg Kashin und Stephanie Lippmann. „Simulation of Liquid Film Migration during Melting“. Materials Science Forum 790-791 (Mai 2014): 127–32. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.127.
Der volle Inhalt der QuelleZhang, J. X., und H. Q. Ye. „Deformation-induced α2 ↔ γ phase transformation in a Ti–48Al–2Cr alloy“. Journal of Materials Research 15, Nr. 10 (Oktober 2000): 2145–50. http://dx.doi.org/10.1557/jmr.2000.0309.
Der volle Inhalt der QuelleDissertationen zum Thema "Interfaces de transformation de phase"
López, Gabriel Alejandro. „Segregation and phase transformations at interfaces“. [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11380449.
Der volle Inhalt der QuelleJedrecy, Alexandre. „Study of phase transformation of matter through topological coordinates“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS386.
Der volle Inhalt der QuelleDuring this thesis two major problems were studied : the liquid-liquid transition and the homogeneous nucleation of ice in water. To achieve this, we used state-of-the-art enhanced sampling methods, coupled with a new collective variable which store the relevant topological information of a system, the PIV. By rigorous calculation of free energy profile for various conditions of pressure and temperature, we have been able to show the lack of free energy barrier and thereof a second critical point for the liquid-liquid transition, with the TIP4P/2005 model of water. By sampling the transition path ensemble with a new TPS algorithm, we have been able to precisely study the homogeneous nucleation of ice in water with the TIP4P/Ice model, showing that critical nuclei arrange themselves optimaly in stacking disorder ice, with purely hexagonal or cubic nuclei spontaneously evolving toward this structure. The insight we obtained includes a two-step mechanism for the aggregation of new hexagonal ice molecules to the critical nucleus, compared to a one-step process for the addition of cubic ice molecules. Finally we performed a quantitative assessment of the quality of the PIV topological metric as reaction coordinate for nucleation : analysis by means of a rigorous likelihood optimization technique based on committor information, indicates that this coordinate outperforms a large set of previously considered coordinates
Abdedou, Nazim. „Non-equilibrium conditions at solid/liquid interfaces“. Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0346.
Der volle Inhalt der QuelleOur work focuses on solutal melting, which occurs when two metals are brought into contact at a temperature between their respective melting temperatures. The solid/liquid interface is initially far from equilibrium, and the kinetics governing its return to equilibrium appear to challenge the models commonly used to describe solidification and melting. To advance our understanding of the process, we approached the problem from three complementary angles. First, we conducted in-situ experiments on the solutal melting of the Au-Ag system using X-ray tomography. Critical analysis of the results appears to indicate that the solid-liquid interface remains out of equilibrium during solutal melting, with the unexpected persistence of concentration gradients at the end of the experiments. Second, in an effort to better understand the experiments, we developed a model based on the thermodynamics of irreversible processes applied to the exchange of chemical species across a sharp solid/liquid interface. Parametrization of interfacial transfer coefficients enables the model to qualitatively reproduce the behaviors observed in the experiments. Finally, we sought to justify the kinetic parameters of the thermodynamic model using molecular dynamics (MD) in the Cu-Ni system. We thus demonstrated that the interfacial coefficients depend on the concentrations at the interface, consistent with the parametrization of the thermodynamic model
Houchmandzadeh, Bahram. „Contribution à l'étude des transitions de phase dans les lignes et interfaces“. Grenoble 1, 1992. http://www.theses.fr/1992GRE10042.
Der volle Inhalt der QuelleRoland, Christopher. „Phase transitions of phospholipid monolayers on air-water interfaces“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66032.
Der volle Inhalt der QuellePerevoshchikova, Nataliya. „Modeling of austenite to ferrite transformation in steels“. Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0342/document.
Der volle Inhalt der QuelleTransformation in steels focusing on the thermodynamic and kinetics conditions at the alpha/gamma interfaces during the ferrite growth. The first chapter deals with the determination of thermodynamic equilibria between alpha and gamma with CalPhad thermodynamic description. We have developed a new hybrid algorithm combining the construction of a convex hull to the more classical Newton-Raphson method to compute two phase equilibria in multicomponent alloys with two sublattices. Its capabilities are demonstrated on ternary Fe-C-Cr and quaternary Fe-C-Cr-Mo steels. In the second chapter, we present a thick interface model aiming to predict the whole spectrum of conditions at an alpha/gamma interface during ferrite growth, from full equilibrium to paraequilibrium with intermediate cases as the most interesting feature. The model, despite its numerous simplifying assumptions to facilitate its numerical implementation, allows to predict some peculiar kinetics in Fe-C-X systems with a minimum of fitting parameters, mainly the ratio between the diffusivities of the substitutional element inside the thick interface and in bulk austenite. The third chapter deals with the phase field model of austenite to ferrite transformation in steels. A thorough analysis on the conditions at the interface has been performed using the technique of matched asymptotic expansions. Special attention is given to clarify the role of the interface mobility on the growth regimes both in simple Fe-C alloys and in more complex Fe-C-Mn alloys
Borges, Gomes Lima Yuri. „Μοdélisatiοn atοmistique de la transfοrmatiοn de phase austénite-ferrite dans les aciers“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR086.
Der volle Inhalt der QuelleThis thesis applies the Quasiparticle Approach (QA) to investigate the atomic scale mechanisms driving the phase transformation from FCC to BCC structures in iron. Initially, the study focuses on pure iron, providing detailed results into the nature and role of dislocations, at the FCC-BCC interface. It was shown that the FCC-BCC interface is semi-coherent and stepped, with two sets of transformations dislocations at the interface. The QA framework reveals how each orientation relationship (OR) influences the interface characteristics. Although the ORs displayed different interface structures, all were ultimately found to follow the same atomic transformation path, driven by the glide of transformation dislocations at the interface. It was concluded that the complete FCC to BCC phase transformation involves the action of the Kurdjumov-Sachs (KS) transformation mechanism in two variants along the two sets of dislocations, with the Kurdjumov-Sachs-Nishiyama (KSN) mechanism emerging as the average of the two KS mechanisms. This detailed description served as a basis for the study of Fe-C systems, where carbon segregation at the interface was observed. Moreover, it was shown that the carbon concentration profiles were consistent with local equilibrium conditions at the interface
Muehlemann, Anton. „Variational models in martensitic phase transformations with applications to steels“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:bb7f4ff4-0911-4dad-bb23-ada904839d73.
Der volle Inhalt der QuelleRuck, Johannes [Verfasser], und Thomas [Akademischer Betreuer] Böhlke. „Modeling martensitic phase transformation in dual phase steels based on a sharp interface theory / Johannes Ruck ; Betreuer: Thomas Böhlke“. Karlsruhe : KIT Scientific Publishing, 2021. http://d-nb.info/1233429361/34.
Der volle Inhalt der QuelleProult, Anne. „Microstructure des phases de frank et kasper : interfaces, defauts et transformation vers un ordre quasiperiodique“. Paris 11, 1996. http://www.theses.fr/1996PA112433.
Der volle Inhalt der QuelleBücher zum Thema "Interfaces de transformation de phase"
A, Shafeev Georgy, Hrsg. Phase transitions induced by short laser pulses. Hauppauge, NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenAlla, Oleinikova, und ScienceDirect (Online service), Hrsg. Interfacial and confined water. Amsterdam: Elsevier, 2008.
Den vollen Inhalt der Quelle findenJapan) RIMS Conference "Far-From-Equilibrium Dynamics" (2011 Kyoto. Far-from-equilibrium dynamics: January 4-8, 2011. Kyoto, Japan: Research Institute for Mathematical Sciences, Kyoto University, 2012.
Den vollen Inhalt der Quelle findenS, El-Genk Mohamed, und United States. National Aeronautics and Space Administration., Hrsg. "HPTAM", a two-dimensional heat pipe transient analysis model, including the startup from a frozen state: Final report no. UNM-ISNPS-4-1995. Albuquerque, N.M: Institute for Space and Nuclear Power Studies, School of Engineering, University of New Mexico, 1995.
Den vollen Inhalt der Quelle findenPerez, Nestor. Phase Transformation in Metals. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49168-0.
Der volle Inhalt der QuelleB, Kale G., Hrsg. Phase transformation and diffusion. Stafa-Zuerich: Trans Tech Publications, 2008.
Den vollen Inhalt der Quelle findenJena, A. K. Phase transformation in materials. Englewood Cliffs, N.J: Prentice Hall, 1992.
Den vollen Inhalt der Quelle findenPerez, Nestor. Phase Transformation in Metals. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-70634-9.
Der volle Inhalt der QuelleK, Grohmann Kleanthes, Hrsg. InterPhases: Phase-theoretic investigations of linguistic interfaces. Oxford: Oxford University Press, 2008.
Den vollen Inhalt der Quelle findenChakraborty, Akshoy Kumar. Phase Transformation of Kaolinite Clay. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1154-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Interfaces de transformation de phase"
Porter, D. A., und K. E. Easterling. „Crystal Interfaces and Microstructure“. In Phase Transformations in Metals and Alloys, 110–84. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-3051-4_3.
Der volle Inhalt der QuellePorter, David A., Kenneth E. Easterling und Mohamed Y. Sherif. „Crystal Interfaces and Microstructure“. In Phase Transformations in Metals and Alloys, 113–98. 4. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003011804-3.
Der volle Inhalt der QuelleWillis, Roy F. „Surface Reconstruction Phase Transformations“. In Dynamical Phenomena at Surfaces, Interfaces and Superlattices, 126–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82535-4_15.
Der volle Inhalt der QuellePaidar, Václav. „Elemental Interfaces and Displacive Phase Transformations“. In Advances in Science and Technology, 63–68. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-16-8.63.
Der volle Inhalt der QuelleSteinbach, Ingo, und Hesham Salama. „Stress–Strain and Fluid Flow“. In Lectures on Phase Field, 69–77. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21171-3_7.
Der volle Inhalt der QuelleSteinbach, Ingo, und Hesham Salama. „Concentration“. In Lectures on Phase Field, 49–59. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21171-3_5.
Der volle Inhalt der QuelleBlum, L., und Dale A. Huckaby. „A Phase Transition Induced by Water Reorientation at Electrode Interfaces“. In New Kinds of Phase Transitions: Transformations in Disordered Substances, 130–49. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0595-1_10.
Der volle Inhalt der QuelleRajendran, Mohan Kumar, Michael Budnitzki und Meinhard Kuna. „Multi-scale Modeling of Partially Stabilized Zirconia with Applications to TRIP-Matrix Composites“. In Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites, 679–721. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42603-3_21.
Der volle Inhalt der QuelleAcharya, D. P., E. Oshimura, K. Sakamoto und H. Kunieda. „The lyotropic ribbon phase and its transformation to the lamellar phase in the potassium N-dodecanoyl-dl-alaninate/water/decanol system“. In Trends in Colloid and Interface Science XVII, 25–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b93969.
Der volle Inhalt der QuelleGalenko, Peter. „Phase Interfaces“. In Phase Field Theory in Materials Physics, 3–14. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-49278-5_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interfaces de transformation de phase"
Ye, Ming-Jyun, Satoshi Ishii und Kuo-Ping Chen. „Revisable Tuning of Tamm Plasmon Polaritons“. In JSAP-Optica Joint Symposia, 19a_P08_6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.19a_p08_6.
Der volle Inhalt der QuelleHatakeyama, Tomotaka, Kota Sawada, Masaru Suzuki und Makoto Watanabe. „Microstructure of Modified 9Cr-1Mo Steel Manufactured via Laser Powder Bed Fusion“. In AM-EPRI 2024, 365–72. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0365.
Der volle Inhalt der QuelleKeblinski, Pawel, Samy Merabia, Jean-Louis Barrat, Sergei Shenogin und David G. Cahil. „Nanoscale Heat Transfer and Phase Transformation Surrounding Intensely Heated Nanoparticles“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13282.
Der volle Inhalt der QuellePlummer, Gabriel, Mikhail I. Mendelev und John W. Lawson. „Molecular Dynamics Simulations of Microstructural Effects on Austenite-Martensite Interfaces in NiTi“. In SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0078.
Der volle Inhalt der QuelleTsao, Wen-Huai, Rebecca Schurr und Christopher E. Kees. „High-Order Phase-Resolving Method for Wave Transformation Over Natural Shorelines“. In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-104544.
Der volle Inhalt der QuelleKumar, Parmod, Sushanta K. Mitra und Arup Kumar Das. „Towards the Understanding of Transformation of Annular to Droplet-Annular Gas-Liquid Flow“. In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-7948.
Der volle Inhalt der QuelleDobovšek, I. „Modeling of non-local interactions on a phase transformation interface“. In ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200903005.
Der volle Inhalt der QuelleJung, Kwangsub, Maenghyo Cho und Min Zhou. „Thermomechanical Behavior of GaN Nanowires During Tensile Loading and Unloading“. In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75144.
Der volle Inhalt der QuellePershin, Yu P., E. A. Bugaev, I. A. Kopilets, S. A. Yulin und I. V. Kozhevnikov. „ATTAINMENT OF PHASE EQUILBRIUM IN MULTILAYERS“. In Physics of X-Ray Multilayer Structures. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/pxrayms.1994.wa.4.
Der volle Inhalt der QuelleToloui, Morteza, und Matthias Militzer. „Phase Field Modelling of Microstructure Evolution in the HAZ of X80 Linepipe Steel“. In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90378.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interfaces de transformation de phase"
Braun, R. J., S. R. Corriel und R. F. Sekerka. Phase-field models for anisotropic interfaces. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5130.
Der volle Inhalt der QuelleKarma, Alain. Phase-Field Modeling of Materials Interfaces and Nanostructures. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1906284.
Der volle Inhalt der QuelleLee Phillips, Nathaniel Steven. Phase Transformation in Cast Superaustenitic Stainless Steels. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/897374.
Der volle Inhalt der QuelleElmer, J. W., J. Wong und T. Palmer. The Kinetics of Phase Transformation in Welds. Office of Scientific and Technical Information (OSTI), Februar 2002. http://dx.doi.org/10.2172/15004301.
Der volle Inhalt der QuelleTang, I. N. Phase transformation and growth of hygroscopic aerosols. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/118382.
Der volle Inhalt der QuelleWicks, June. Phase transformation kinetics in shock-compressed Zirconium. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1579714.
Der volle Inhalt der QuelleSummers, T. S. E. Phase formation at bonded vanadium and stainless steel interfaces. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5836494.
Der volle Inhalt der QuelleGrady, D. E. Coherent phase transformation under nonhydrostatic stress-wave loading. Office of Scientific and Technical Information (OSTI), Dezember 1989. http://dx.doi.org/10.2172/5066974.
Der volle Inhalt der QuelleBhattacharya, Kaushik. A Theory of Phase Transformation with Internal Variables. Fort Belvoir, VA: Defense Technical Information Center, Mai 1998. http://dx.doi.org/10.21236/ada345651.
Der volle Inhalt der QuelleMorgan, Dane. Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1253141.
Der volle Inhalt der Quelle