Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interface hydrogel/substrat“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interface hydrogel/substrat" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interface hydrogel/substrat"
Lin, Yue-Xian, Shu-Han Li und Wei-Chen Huang. „Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing“. Micromachines 12, Nr. 9 (31.08.2021): 1057. http://dx.doi.org/10.3390/mi12091057.
Der volle Inhalt der QuelleLiu, Junjie, Nan Hu, Yao Xie, Peng Wang, Jingxiang Chen und Qianhua Kan. „Polyacrylic Acid Hydrogel Coating for Underwater Adhesion: Preparation and Characterization“. Gels 9, Nr. 8 (29.07.2023): 616. http://dx.doi.org/10.3390/gels9080616.
Der volle Inhalt der QuelleYang, Yueh-Hsun Kevin, Courtney R. Ogando und Gilda A. Barabino. „In Vitro Evaluation of the Influence of Substrate Mechanics on Matrix-Assisted Human Chondrocyte Transplantation“. Journal of Functional Biomaterials 11, Nr. 1 (18.01.2020): 5. http://dx.doi.org/10.3390/jfb11010005.
Der volle Inhalt der QuellePickrell, D. J., W. Zhu, A. R. Badzian, R. E. Newnham und R. Messier. „Near-interface characterization of diamond films on silica and silicon“. Journal of Materials Research 6, Nr. 6 (Juni 1991): 1264–77. http://dx.doi.org/10.1557/jmr.1991.1264.
Der volle Inhalt der QuelleHens, Philip, Julian Müller, Erdmann Spiecker und Peter J. Wellmann. „Defect Structures at the Silicon/3C-SiC Interface“. Materials Science Forum 717-720 (Mai 2012): 423–26. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.423.
Der volle Inhalt der QuelleBordbar-Khiabani, Aydin, Ilijana Kovrlija, Janis Locs, Dagnija Loca und Michael Gasik. „Octacalcium Phosphate-Laden Hydrogels on 3D-Printed Titanium Biomaterials Improve Corrosion Resistance in Simulated Biological Media“. International Journal of Molecular Sciences 24, Nr. 17 (24.08.2023): 13135. http://dx.doi.org/10.3390/ijms241713135.
Der volle Inhalt der QuelleArendse, Christopher J., Theophillus F. G. Muller, Franscious R. Cummings und Clive J. Oliphant. „Oxidation Reduction in Nanocrystalline Silicon Grown by Hydrogen-Profiling Technique“. Journal of Nano Research 41 (Mai 2016): 9–17. http://dx.doi.org/10.4028/www.scientific.net/jnanor.41.9.
Der volle Inhalt der QuelleZhao, Zhitong, Weiwei Gao und Hao Bai. „A mineral layer as an effective binder to achieve strong bonding between a hydrogel and a solid titanium substrate“. Journal of Materials Chemistry B 6, Nr. 23 (2018): 3859–64. http://dx.doi.org/10.1039/c8tb01042k.
Der volle Inhalt der QuelleTamura, Motonori. „Hydrogen Permeation of Multi-Layered-Coatings“. Advanced Materials Research 1152 (April 2019): 9–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1152.9.
Der volle Inhalt der QuelleYamauchi, Akira, Yuji Yamauchi, Yuko Hirohata, Tomoaki Hino und Kazuya Kurokawa. „TDS Measurement of Hydrogen Released from Stainless Steel Oxidized in H2O-Containing Atmospheres“. Materials Science Forum 522-523 (August 2006): 163–70. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.163.
Der volle Inhalt der QuelleDissertationen zum Thema "Interface hydrogel/substrat"
Augustine, Anusree. „Swelling induced debonding of thin hydrogel films grafted on silicon substrate : the role of interface physical-chemistry“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS040.
Der volle Inhalt der QuelleHydrogel coatings are transparent and hydrophilic polymer networks that absorb a lot of water and can be suitable candidates for anti-mist coatings. However, swelling-induced stresses within the film can result in detrimental debonding of hydrogel and may fail. In this study, these debonding processes are investigated in the relation to the grafting density at the film/substrate interface, so as to control and predict the failure of the coatings during swelling or under contact stresses. For that purpose, we have developed a methodology consisting in monitoring the initiation and the propagation of swelling-induced delamination from well-controlled preexisting interface defects.Surface-attached poly(dimethylacrylamide) (PDMA) hydrogel thin films are prepared on silicon wafers from the simultaneous Cross-Linking And Grafting (CLAG) of functionalized polymer chains by thiol-ene click chemistry. This strategy allows to tune the film thickness (0.1-2 µm) while ensuring a homogeneous crosslinking density. In order to vary the strength of the film/substrate interface, the silicon wafer is grafted by mixing reactive mercaptosilane and unreactive propylsilane in various proportions prior to the formation of the hydrogel film. We characterize the mercaptosilane surface fraction thus obtained by XPS and TOF-SIMS analyses. Well-controlled line defects (width between 2 and 100 µm) are also created to nucleate delamination of the hydrogel from the substrate.Swelling-induced debonding of the film is achieved under a constant vapor flow ensuring water saturation. Optical observations show the progressive debonding of the film from the pre-existing line defects under the action of localized swelling stresses. We obtain a delamination pattern of typical so-called telephone cord instability. We measure the debonding propagation velocity where the hydrogel is grafted to the substrate. The debonding rate is found to decrease over two orders of magnitude when the amount of mercaptosilane in the reactive silane mixture is increased from 10% to 100% while increasing the covalent bonds between hydrogel and substrate. A threshold thickness for debonding is also observed. This threshold thickness increases with the amount of mercaptosilane used to graft the substrate. We derived quantitative values of the interface fracture energy from the measured thickness threshold with a simple fracture mechanics model
Bücher zum Thema "Interface hydrogel/substrat"
Lin, Nian, und Sebastian Stepanow. Designing low-dimensional nanostructures at surfaces by supramolecular chemistry. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.10.
Der volle Inhalt der QuelleBuchteile zum Thema "Interface hydrogel/substrat"
Washio, Jumpei, Yoko Sakuma, Yuko Shimada und Nobuhiro Takahashi. „Hydrogen-sulfide production from various substrates by oral Veillonella and effects of lactate on the production“. In Interface Oral Health Science 2009, 250–51. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-99644-6_66.
Der volle Inhalt der QuelleSligar, Stephen G., und Clifford R. Robinson. „Osmotic and Hydrostatic Pressure as Tools to Study Molecular Recognition“. In High Pressure Effects in Molecular Biophysics and Enzymology. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195097221.003.0026.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interface hydrogel/substrat"
Edgerton, Alex, Joseph Najem und Donald Leo. „A Hydrogel-Based Droplet Interface Lipid Bilayer Network“. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7580.
Der volle Inhalt der QuelleSarles, Stephen A., und Donald J. Leo. „Encapsulated Interface Bilayers for Durable Biomolecular Materials“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3752.
Der volle Inhalt der QuelleSarles, Stephen A., Kevin L. Garrison, Taylor T. Young und Donald J. Leo. „Formation and Encapsulation of Biomolecular Arrays for Developing Arrays of Membrane-Based Artificial Hair Cell Sensors“. In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5095.
Der volle Inhalt der QuelleYoshii, I., K. Hama und K. Hashimoto. „Role of Hydrogen at Poly-Si/SiO2 Interface in Trap Generation by Substrate Hot-Electron Injection“. In 30th International Reliability Physics Symposium. IEEE, 1992. http://dx.doi.org/10.1109/irps.1992.363288.
Der volle Inhalt der QuelleYoshii, I., K. Hama und K. Hashimoto. „Role of hydrogen at poly-Si/SiO/sub 2/ interface in trap generation by substrate hot-electron injection“. In 30th Annual Proceedings Reliability Physics 1992. IEEE, 1992. http://dx.doi.org/10.1109/relphy.1992.187638.
Der volle Inhalt der QuelleTamaddoni, Nima, und Andy Sarles. „Fabrication and Characterization of a Membrane Based Hair Cell Sensor That Features Soft Hydrogel Materials“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8067.
Der volle Inhalt der QuellePorterfield, Malcolm, und Diana Borca-Tasciuc. „Molecular Dynamics Simulation of Ultra-Fast Phase Transition in Water Nanofilms“. In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9073.
Der volle Inhalt der QuelleHan, Jeahyeong, Daniel Joe, Rich I. Masel und Mark A. Shannon. „AFM Verification of CFn Surface Treatment Effect and Its Correlation to Stiction Reduction in Microvalves“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49842.
Der volle Inhalt der QuelleUnderwood, John H., Robert H. Carter, Edward Troiano und Anthony P. Parker. „Mechanics Design Models for Advanced Pressure Vessels: Autofrettage With Higher Strength Steel; Steel Liner - Composite Jacket Configurations; Alternative Thermal Barrier Coatings“. In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25006.
Der volle Inhalt der QuelleLin, Shih-Chang, Fangang Tseng und Ching-Chang Chieng. „Numerical Simulation of Protein Stamping Process Driven by Capillary Force“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33070.
Der volle Inhalt der Quelle