Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interface hydrogel“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interface hydrogel" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interface hydrogel"
He, Chubin, Xiuru Xu, Yang Lin, Yang Cui und Zhengchun Peng. „A Bilayer Skin-Inspired Hydrogel with Strong Bonding Interface“. Nanomaterials 12, Nr. 7 (29.03.2022): 1137. http://dx.doi.org/10.3390/nano12071137.
Der volle Inhalt der QuelleLim, Chanhyuk, Yongseok Joseph Hong, Jaebong Jung, Yoonsoo Shin, Sung-Hyuk Sunwoo, Seungmin Baik, Ok Kyu Park et al. „Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels“. Science Advances 7, Nr. 19 (Mai 2021): eabd3716. http://dx.doi.org/10.1126/sciadv.abd3716.
Der volle Inhalt der QuelleMichel, Raphaël, Léna Poirier, Quentin van Poelvoorde, Josette Legagneux, Mathieu Manassero und Laurent Corté. „Interfacial fluid transport is a key to hydrogel bioadhesion“. Proceedings of the National Academy of Sciences 116, Nr. 3 (02.01.2019): 738–43. http://dx.doi.org/10.1073/pnas.1813208116.
Der volle Inhalt der QuelleZhao, Wenyu, Zhuofan Lin, Xiaopu Wang, Ziya Wang und Zhenglong Sun. „Mechanically Interlocked Hydrogel–Elastomer Strain Sensor with Robust Interface and Enhanced Water—Retention Capacity“. Gels 8, Nr. 10 (30.09.2022): 625. http://dx.doi.org/10.3390/gels8100625.
Der volle Inhalt der QuelleChen, Jing, Jingli Yang, Guorong Gao und Jun Fu. „Responsive Bilayered Hydrogel Actuators Assembled by Supramolecular Recognition“. MRS Advances 3, Nr. 28 (2018): 1583–88. http://dx.doi.org/10.1557/adv.2018.222.
Der volle Inhalt der QuelleShay, Tim, Orlin D. Velev und Michael D. Dickey. „Soft electrodes combining hydrogel and liquid metal“. Soft Matter 14, Nr. 17 (2018): 3296–303. http://dx.doi.org/10.1039/c8sm00337h.
Der volle Inhalt der QuelleZhao, Xinyi, Bilal Javed, Furong Tian und Kangze Liu. „Hydrogel on a Smart Nanomaterial Interface to Carry Therapeutics for Digitalized Glioma Treatment“. Gels 8, Nr. 10 (17.10.2022): 664. http://dx.doi.org/10.3390/gels8100664.
Der volle Inhalt der QuelleLin, Yue-Xian, Shu-Han Li und Wei-Chen Huang. „Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing“. Micromachines 12, Nr. 9 (31.08.2021): 1057. http://dx.doi.org/10.3390/mi12091057.
Der volle Inhalt der QuelleGevrek, Tugce Nihal, Aysun Degirmenci, Rana Sanyal und Amitav Sanyal. „Multifunctional and Transformable ‘Clickable’ Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment“. Polymers 12, Nr. 6 (26.05.2020): 1211. http://dx.doi.org/10.3390/polym12061211.
Der volle Inhalt der QuelleQiu, Fei, Xiaopeng Fan, Wen Chen, Chunming Xu, Yumei Li und Renjian Xie. „Recent Progress in Hydrogel-Based Synthetic Cartilage: Focus on Lubrication and Load-Bearing Capacities“. Gels 9, Nr. 2 (08.02.2023): 144. http://dx.doi.org/10.3390/gels9020144.
Der volle Inhalt der QuelleDissertationen zum Thema "Interface hydrogel"
Han, Ning. „Hydrogel-Electrospun Fiber Mat Composite Materials for the Neuroprosthetic Interface“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1292881087.
Der volle Inhalt der QuelleEdgerton, Alexander James. „Design and Testing of a Hydrogel-Based Droplet Interface Lipid Bilayer Array System“. Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/56894.
Der volle Inhalt der QuelleMaster of Science
Augustine, Anusree. „Swelling induced debonding of thin hydrogel films grafted on silicon substrate : the role of interface physical-chemistry“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS040.
Der volle Inhalt der QuelleHydrogel coatings are transparent and hydrophilic polymer networks that absorb a lot of water and can be suitable candidates for anti-mist coatings. However, swelling-induced stresses within the film can result in detrimental debonding of hydrogel and may fail. In this study, these debonding processes are investigated in the relation to the grafting density at the film/substrate interface, so as to control and predict the failure of the coatings during swelling or under contact stresses. For that purpose, we have developed a methodology consisting in monitoring the initiation and the propagation of swelling-induced delamination from well-controlled preexisting interface defects.Surface-attached poly(dimethylacrylamide) (PDMA) hydrogel thin films are prepared on silicon wafers from the simultaneous Cross-Linking And Grafting (CLAG) of functionalized polymer chains by thiol-ene click chemistry. This strategy allows to tune the film thickness (0.1-2 µm) while ensuring a homogeneous crosslinking density. In order to vary the strength of the film/substrate interface, the silicon wafer is grafted by mixing reactive mercaptosilane and unreactive propylsilane in various proportions prior to the formation of the hydrogel film. We characterize the mercaptosilane surface fraction thus obtained by XPS and TOF-SIMS analyses. Well-controlled line defects (width between 2 and 100 µm) are also created to nucleate delamination of the hydrogel from the substrate.Swelling-induced debonding of the film is achieved under a constant vapor flow ensuring water saturation. Optical observations show the progressive debonding of the film from the pre-existing line defects under the action of localized swelling stresses. We obtain a delamination pattern of typical so-called telephone cord instability. We measure the debonding propagation velocity where the hydrogel is grafted to the substrate. The debonding rate is found to decrease over two orders of magnitude when the amount of mercaptosilane in the reactive silane mixture is increased from 10% to 100% while increasing the covalent bonds between hydrogel and substrate. A threshold thickness for debonding is also observed. This threshold thickness increases with the amount of mercaptosilane used to graft the substrate. We derived quantitative values of the interface fracture energy from the measured thickness threshold with a simple fracture mechanics model
Baxani, Kamal Divesh. „Hydrogel encapsulated droplet interface bilayer networks as a chassis for artificial cells and a platform for membrane studies“. Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/112707/.
Der volle Inhalt der QuelleBerts, Ida. „Relating the Bulk and Interface Structure of Hyaluronan to Physical Properties of Future Biomaterials“. Doctoral thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198357.
Der volle Inhalt der QuelleVanderwerker, Zachary Thomas. „Using Lipid Bilayers in an Artificial Axon System“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/24449.
Der volle Inhalt der QuelleMaster of Science
Yang, Xianpeng. „Strong Cellulose Nanofiber Composite Hydrogels via Interface Tailoring“. Kyoto University, 2020. http://hdl.handle.net/2433/253333.
Der volle Inhalt der QuelleCiapa, Lola. „Frottement de films minces d'hydrogel : poroélasticité et interface“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS006.
Der volle Inhalt der QuelleThin hydrogel films find applications in biomedical engineering (synthetic articular cartilage, contact lenses) or optics (anti-fog coatings) thanks to their biocompatibility, transparency, and lubricating properties. The frictional properties of these systems in water, which are crucial for their use, arise from the complex coupling of several physical mechanisms. Fluid film lubrication, poroelastic flows in the gel due to pressure gradients, and molecular interactions at the interface between the gel and the sliding surface are all involved in gel friction.In the present work, we provide a description of the role played by interfacial molecular interactions on friction of hydrogels in water. To this end, we built an experimental set up in which both poroelastic flows and water film lubrication are suppressed. By sliding a spherical silica lens with a rotative trajectory over a micrometer-thick polydimethylacrylamide gel film immersed in water, under imposed normal force and velocity, we measure the frictional forces and observe the gel/silica contact by interferometry. By functionalizing the silica with various silanes, we show an effect of surface chemistry of the silica lens on the measured friction forces and their dependence on sliding speed, over three decades in velocity. In transient regime, we demonstrate an ageing phenomenon of the interface when the lens is maintained in contact with the gel over long times before sliding initiation. We derive a model for steady state friction based on the thermodynamic adsorption/desorption of polymer chains on the sliding surface. This model successfully accounts for our experimental observations with a set of molecular parameters which agree with the physico-chemistry of our silanated systems
Feng, Shi. „Elucidation of hydrogen oxidation kinetics on metal/proton conductor interface“. Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48941.
Der volle Inhalt der QuelleMatsumoto, Mitsuhiro. „Molecular Orientation near Liquid-vapor Interface of Hydrogen-bonding Systems“. 京都大学 (Kyoto University), 1988. http://hdl.handle.net/2433/86403.
Der volle Inhalt der QuelleBücher zum Thema "Interface hydrogel"
M, Hasan M., Nyland T. W und United States. National Aeronautics and Space Administration., Hrsg. Mixing and transient interface condensation of a liquid hydrogen tank. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenM, Hasan Mohammad, Nyland Ted W und United States. National Aeronautics and Space Administration., Hrsg. Mixing and transient interface condensation of a liquid hydrogen tank. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenGregory, Jerkiewicz, Feliu Juan M, Popov Branko N, Electrochemical Society Meeting, Electrochemical Society. Physical Electrochemistry Division. und International Symposium on Hydrogen Surfaces and Interfaces (2000 : Toronto, Ont.), Hrsg. Hydrogen at surface and interfaces: Proceedings of the international symposium. Pennington, NJ: Electrochemical Society, Inc., 2000.
Den vollen Inhalt der Quelle findenH, Fabik Richard, und Lewis Research Center, Hrsg. Using silicon diodes for detecting the liquid-vapor interface in hydrogen. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Den vollen Inhalt der Quelle findenKhatamian, D. Hydrogen traps in the oxide/alloy interface region of Zr-Nb alloys. Chalk River, Ont: Reactor Materials Research Branch, Chalk River Laboratories, 1995.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Mixing and Transient Interface Condensation of a Liquid Hydrogen Tank. Independently Published, 2018.
Den vollen Inhalt der Quelle findenSurface and interface study of PdCr/SiC schottky diode gas sensor annealed at 425C̊. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Den vollen Inhalt der Quelle findenLin, Nian, und Sebastian Stepanow. Designing low-dimensional nanostructures at surfaces by supramolecular chemistry. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.10.
Der volle Inhalt der QuelleBuchteile zum Thema "Interface hydrogel"
Matsumoto, Takuya. „Hydrogel-Based Biomimetic Environment for In Vitro Cell and Tissue Manipulation“. In Interface Oral Health Science 2014, 161–68. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55192-8_13.
Der volle Inhalt der QuelleRoy, Niladri, Nabanita Saha, Takeshi Kitano, Eva Vitkova und Petr Saha. „Effectiveness of Polymer Sheet Layer to Protect Hydrogel Dressings“. In Trends in Colloid and Interface Science XXIV, 127–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19038-4_22.
Der volle Inhalt der QuelleYang, Jin, Yue Yin, Harry C. Cramer und Christian Franck. „The Penetration Dynamics of a Violent Cavitation Bubble Through a Hydrogel–Water Interface“. In Challenges in Mechanics of Time Dependent Materials, Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 2, 65–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86737-9_9.
Der volle Inhalt der QuelleIkai, Hiroyo, Keisuke Nakamura, Midori Shirato, Taro Kanno, Atsuo Iwasawa, Yoshimi Niwano, Keiichi Sasaki und Masahiro Kohno. „Bactericidal Effect of Hydroxyl Radical Generated by Photolysis of Hydrogen Peroxide“. In Interface Oral Health Science 2011, 86–88. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54070-0_14.
Der volle Inhalt der QuelleAkbar, Teuku Fawzul, Christoph Tondera und Ivan Minev. „Conductive Hydrogels for Bioelectronic Interfaces“. In Neural Interface Engineering, 237–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41854-0_9.
Der volle Inhalt der QuelleZoz, Henning, und Andreas Franz. „Hydrogen and Electromobility Agenda“. In The Nano-Micro Interface, 567–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679195.ch27.
Der volle Inhalt der QuelleSoper, A. K. „Structural Studies of Water Near an Interface“. In Hydrogen-Bonded Liquids, 147–58. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3274-9_12.
Der volle Inhalt der QuelleJurczyk, M., und W. Rajewski. „Nanocrystalline Hydrogen Storage Alloys Formed by Mechanical Alloying“. In Interface Controlled Materials, 304–9. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760622x.ch49.
Der volle Inhalt der QuelleHeinen, Matthias, Simon Homes, Gabriela Guevara-Carrion und Jadran Vrabec. „Mass Transport Across Droplet Interfaces by Atomistic Simulations“. In Fluid Mechanics and Its Applications, 251–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_13.
Der volle Inhalt der QuelleRossky, Peter J. „Structure and Dynamics of Water at Interfaces“. In Hydrogen Bond Networks, 337–38. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8332-9_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interface hydrogel"
Edgerton, Alex, Joseph Najem und Donald Leo. „A Hydrogel-Based Droplet Interface Lipid Bilayer Network“. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7580.
Der volle Inhalt der QuelleSarles, Stephen A., und Donald J. Leo. „Encapsulated Interface Bilayers for Durable Biomolecular Materials“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3752.
Der volle Inhalt der QuelleTakehara, H., A. Nagaoka, J. Noguchi, T. Akagi, H. Kasai und T. Ichiki. „Brain interface device with permeable hydrogel membrane for in situ analysis of neural cells“. In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.h-4-4.
Der volle Inhalt der QuelleVukasinovic, Jelena, und Ari Glezer. „Flow Through a Micro-Bioreactor in a Neural Interface System“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59598.
Der volle Inhalt der QuelleNorthwood, E., R. Kowalski und J. Fisher. „An In-Vitro Investigation of Sliding Friction Between Biomaterials for Cartilage Substitution and Articular Cartilage“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63350.
Der volle Inhalt der QuelleBhadra, Jolly, Pramod K. Nampoothiri, Kamlesh J. Suthar und D. Roy Mahapatra. „Effect of Core-Shell Structure of Hydrogel Beads on the Threshold Concentration of Water for Swelling and its pH Sensitivity“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39583.
Der volle Inhalt der QuelleTamaddoni, Nima, und Andy Sarles. „Fabrication and Characterization of a Membrane Based Hair Cell Sensor That Features Soft Hydrogel Materials“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8067.
Der volle Inhalt der QuelleTemenoff, Johnna S. „A Modular System to Examine Fibroblastic Differentiation of Mesenchymal Stem Cells Under Tensile Loading in Response to Changes in the Extracellular Environment“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53704.
Der volle Inhalt der QuelleBrusina, Ksenia E., Alexey I. Nikiforov, Elizaveta A. Fomina, Dmitriy O. Testov, Kamil G. Gareev und Nikita O. Sitkov. „Assessing the Propagation of Magnetic Nanoparticles in a Microfluidic Channel and their Behavior at the Suspension-Hydrogel Interface for On-Chip Modeling of Organs and Tissues“. In 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon). IEEE, 2024. http://dx.doi.org/10.1109/elcon61730.2024.10468336.
Der volle Inhalt der QuelleSarles, Stephen A., Kevin L. Garrison, Taylor T. Young und Donald J. Leo. „Formation and Encapsulation of Biomolecular Arrays for Developing Arrays of Membrane-Based Artificial Hair Cell Sensors“. In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5095.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interface hydrogel"
Jones, Reese E., Royce Reyes, Xiaowang Zhou, Michael E. Foster, Dan Catalin Spataru und Doug E. Spearot. Hydrogen diffusion across interfaces in zirconium. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1592901.
Der volle Inhalt der QuelleGupta, Alexander. Materials and Interfaces for Electrocatalytic Hydrogen Production and Utilization. Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1768432.
Der volle Inhalt der QuelleVilim, R. B. Dynamic modeling efforts for system interface studies for nuclear hydrogen production. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/919326.
Der volle Inhalt der QuelleHirofumi Ohashi und Steven R. Sherman. Tritium Movement and Accumulation in the NGNP System Interface and Hydrogen Plant. Office of Scientific and Technical Information (OSTI), Juni 2007. http://dx.doi.org/10.2172/919556.
Der volle Inhalt der QuelleParkins. L51806 Effects of Hydrogen on Low-pH Stress Corrosion Crack Growth. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 1998. http://dx.doi.org/10.55274/r0010142.
Der volle Inhalt der QuelleBruce. L51942 Refinement of Cooling Rate Prediction Methods for In-Service Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 2003. http://dx.doi.org/10.55274/r0010435.
Der volle Inhalt der QuelleBruce und Yushanov. L52056 Enhancement of PRCI Thermal Analysis Model for Assessment of Attachments. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2004. http://dx.doi.org/10.55274/r0010436.
Der volle Inhalt der QuelleC Taylor, R Kelly und M Neurock. First Principles Calculations of Electrochemically Controlled Hydrogen Mobility and Uptake at the Ni(111)H2O Interface. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/875455.
Der volle Inhalt der QuelleEschbach, E. J., und C. W. Enderlin. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10194717.
Der volle Inhalt der QuelleUlrich, Thomas A., Roger Lew, Torrey J. Mortenson, Jooyoung Park, Heather D. Medema und Ronald Laurids Boring PhD. An Integrated Energy Systems Prototype Human-System Interface for a Steam Extraction Loop System to Support Joint Electricity-Hydrogen Flexible Operations. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1608624.
Der volle Inhalt der Quelle