Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interband Cascade Laser (ICL)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interband Cascade Laser (ICL)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interband Cascade Laser (ICL)"
Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt und Igor Vurgaftman. „The Interband Cascade Laser“. Photonics 7, Nr. 3 (15.09.2020): 75. http://dx.doi.org/10.3390/photonics7030075.
Der volle Inhalt der QuelleHan, Hong, Xumin Cheng, Zhiwei Jia und K. Alan Shore. „Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback“. Photonics 8, Nr. 9 (31.08.2021): 366. http://dx.doi.org/10.3390/photonics8090366.
Der volle Inhalt der QuelleFordyce, J. A. M., D. A. Diaz-Thomas, L. O'Faolain, A. N. Baranov, T. Piwonski und L. Cerutti. „Single-mode interband cascade laser with a slotted waveguide“. Applied Physics Letters 121, Nr. 21 (21.11.2022): 211102. http://dx.doi.org/10.1063/5.0120460.
Der volle Inhalt der QuelleMeyer, Jerry R., Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley und Igor Vurgaftman. „Interband Cascade Photonic Integrated Circuits on Native III-V Chip“. Sensors 21, Nr. 2 (16.01.2021): 599. http://dx.doi.org/10.3390/s21020599.
Der volle Inhalt der QuelleRyczko, Krzysztof, Janusz Andrzejewski und Grzegorz Sęk. „Towards Interband Cascade lasers on InP Substrate“. Materials 15, Nr. 1 (22.12.2021): 60. http://dx.doi.org/10.3390/ma15010060.
Der volle Inhalt der QuelleMassengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins und J. F. Klem. „Long wavelength interband cascade lasers“. Applied Physics Letters 120, Nr. 9 (28.02.2022): 091105. http://dx.doi.org/10.1063/5.0084565.
Der volle Inhalt der QuelleAbajyan, Pavel, Baptiste Chomet, Daniel A. Diaz-Thomas, Mohammadreza Saemian, Martin Mičica, Juliette Mangeney, Jerome Tignon et al. „Mid-Infrared Frequency Combs based on Single Section Interband Cascade Lasers“. EPJ Web of Conferences 287 (2023): 07006. http://dx.doi.org/10.1051/epjconf/202328707006.
Der volle Inhalt der QuelleZhao, Maorong, Guangqiong Xia, Ke Yang, Shuman Liu, Junqi Liu, Qiupin Wang, Jianglong Liu und Zhengmao Wu. „Nonlinear Dynamics of Mid-Infrared Interband Cascade Lasers Subject to Variable-Aperture Optical Feedback“. Photonics 9, Nr. 6 (10.06.2022): 410. http://dx.doi.org/10.3390/photonics9060410.
Der volle Inhalt der QuelleLiao, Lihuan, Jingjing Zhang und Daming Dong. „The driver design for N2O gas detection system based on tunable interband cascade laser“. E3S Web of Conferences 78 (2019): 03002. http://dx.doi.org/10.1051/e3sconf/20197803002.
Der volle Inhalt der QuelleSchmitt, Katrin, Mara Sendelbach, Christian Weber, Jürgen Wöllenstein und Thomas Strahl. „Resonant photoacoustic cells for laser-based methane detection“. Journal of Sensors and Sensor Systems 12, Nr. 1 (25.01.2023): 37–44. http://dx.doi.org/10.5194/jsss-12-37-2023.
Der volle Inhalt der QuelleDissertationen zum Thema "Interband Cascade Laser (ICL)"
Abajyan, Pavel. „Génération et contrôle de peignes de fréquences optiques dans les lasers à cascade d'interbande (ICL)“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS024.
Der volle Inhalt der QuelleOptical frequency combs (OFCs) are coherent light sources that emit a broad spectrum of discrete, perfectly spaced modes, each with an absolute frequency measurable with the precision of an atomic clock.OFCs in the mid-infrared (MIR 3-12 μm) have recently become of great interest to molecular spectroscopy by the presence of strong absorption of molecular vibration and rotation modes in the spectroscopic "fingerprint" region. Nevertheless, the operation of the OFC in the crucial mid-infrared region (MWIR 3-6 μm) remains significantly underdeveloped compared to other parts of the MIR.In this work, we present an in-depth experimental study of a new generation of interband cascade laser (ICL) and their potential for OFCs in MWIR. The thesis provides proof of the OFC regime both by high-frequency beatnote spectroscopy (BN), and by the new technique of temporal reconstruction of the ultrafast dynamics of these lasers, this making it possible to "visualize" the control of the type of operation of the OFC in ICL. In particular, was carried out the optoelectrical characterization of a set of ICLs with a range of geometries, with the aim of studying low group delay dispersion (GDD) ICLs at longer wavelengths than those previously studied: an ICL operating at 3.8 μm with a 2-section architecture, ICLs operating at 4.1 μm, and another generation of ICL operating at a wavelength of 4.2 μm designed with a wide spectral gain. OFC regime formation and GDD are linked and important for understanding the fundamental mechanisms of OFC formation. ICLs were studied using optical and electrical BN spectroscopy. Passive mode locking (PML) (or free running) and active mode locking (AML) were demonstrated. For 2-section ICLs, where the ICL is divided into a long part and a short part for a single cavity, the exact effect of the small section on the BN has been explained: allows to (a) control very finely the intracavity GDD, (b) introducing losses and showing that we converge towards PML behavior.This work then feeds into the case of ICLs operating at longer wavelengths in a single section cavity and where the GDD is expected to be less. In the particular case of the ICLs operating at 4.1 μm, we demonstrate a strong optical BN, which can be injection locked by radio frequency (RF) injection at the round trip frequency of the ICL, showing the first-steps of active modelocking. This injection locking was achieved using a simple single-section laser architecture with very low waveguide dispersion, and showing that adapting the ICL waveguide for RF operation is not a fundamental requirement. In the final part of the thesis, we show the implementation of the "Shifted Wave Interference Fourier Transform Spectroscopy" (SWIFTS) technique, used in two different configurations, to reconstruct the laser's temporal intensity profile at ultrafast timescales. This permits to demonstrate the nature of OFC generated in these ICLs. Indeed, we show that the ICL operates in the frequency modulation (FM) regime when free-running and transits towards an amplitude modulation (AM) regime when actively modelocked. Interestingly, we also show that ICLs can generate short pulses of ~6.7 ps in free-running operation, despite FM operation, and highlight the control of the pulse width and peak intensity via RF injection. This permits to compress the free-running pulses by a factor of 2.3 to obtain sub-3 ps pulses.This work constitutes an important step in the creation and control of OFCs in the MWIR region. The prospects are to broaden the spectral bandwidth of ICLs and generate high-power ultrashort pulses in the MWIR and beyond
O'Hagan, Seamus. „Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.
Der volle Inhalt der QuelleHerdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer und Thomas [Akademischer Betreuer] [Walther. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther“. Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.
Der volle Inhalt der QuelleHerdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer und Thomas [Akademischer Betreuer] Walther. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther“. Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.
Der volle Inhalt der QuelleHerdt, Andreas. „The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications“. Phd thesis, 2020. https://tuprints.ulb.tu-darmstadt.de/17369/1/Dissertation_HerdtAndreas_20201216.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "Interband Cascade Laser (ICL)"
Chang, Po-Hsiung, Jiun-Ming Li, Chiang Juay Teo, Boo Cheong Khoo, Christopher M. Brophy und Robert G. Wright. „Measurements of Jet A Vapor Concentration Using Interband Cascade Laser“. In 31st International Symposium on Shock Waves 1, 385–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interband Cascade Laser (ICL)"
Dunayevskiy, Ilya, Jason Kriesel, Ryan Briggs, Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, William W. Bewley, Igor Vurgaftman und Jerry R. Meyer. „Broadly tunable external cavity interband cascade laser (EC-ICL) for hydrocarbon analysis“. In Quantum Sensing and Nano Electronics and Photonics XIX, herausgegeben von Manijeh Razeghi, Giti A. Khodaparast und Miriam S. Vitiello. SPIE, 2023. http://dx.doi.org/10.1117/12.2647924.
Der volle Inhalt der QuelleIkyo, Barnabas A., Igor P. Marko, Alf R. Adams, Stephen J. Sweeney, Chadwick L. Canedy, Igor Vurgaftman, Chul Soo Kim, Mijin Kim, William W. Bewley und Jerry R. Meyer. „Temperature sensitivity of mid-infrared type II “W” interband cascade lasers (ICL) emitting at 4.1µm at room temperature“. In 2010 IEEE 22nd International Semiconductor Laser Conference (ISLC). IEEE, 2010. http://dx.doi.org/10.1109/islc.2010.5642761.
Der volle Inhalt der QuelleProkhorov, I., T. Kluge und C. Janssen. „Direct simultaneous spectroscopic measurements of rare and doubly-substituted CO2 isotopologues using interband cascade lasers“. In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435870.
Der volle Inhalt der QuelleGluszek, Aleksander, Arkadiusz Hudzikowski, Karol Krzempek, Krzysztof M. Abramski und Frank K. Tittel. „Low energy consumption, compact setup for isotopie analysis of methane at 3007.95 cm−1 and 3008.39 cm−1 using room-temperature CW interband cascade laser (ICL)“. In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086924.
Der volle Inhalt der QuelleLoparo, Zachary E., Joseph G. Lopez, Sneha Neupane, Subith S. Vasu, William P. Partridge und Konstantin Vodopyanov. „Time-Resolved Measurements of Intermediate Concentrations in Fuel-Rich n-Heptane Oxidation Behind Reflected Shock Waves“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63344.
Der volle Inhalt der QuelleSchwarm, Kevin K., Nicolas Q. Minesi, Barathan Jeevaretanam, Sarah Enayati, Tsu-Chin Tsao und R. Mitchell Spearrin. „Cycle-Resolved Emissions Analysis of Polyfuel Reciprocating Engines via In-Situ Laser Absorption Spectroscopy“. In ASME 2022 ICE Forward Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icef2022-88543.
Der volle Inhalt der QuelleBewley, W. W., C. L. Canedy, M. Kim, C. S. Kim, J. A. Nolde, D. C. Larrabee, J. R. Lindle, I. Vurgaftman und J. R. Meyer. „Interband cascade laser progress“. In Integrated Optoelectronic Devices 2008, herausgegeben von Alexey A. Belyanin und Peter M. Smowton. SPIE, 2008. http://dx.doi.org/10.1117/12.766908.
Der volle Inhalt der QuelleSpott, A., E. J. Stanton, A. Torres, M. L. Davenport, C. L. Canedy, I. Vurgaftman, M. Kim et al. „Interband cascade laser on silicon“. In 2017 IEEE Photonics Conference (IPC) Part II. IEEE, 2017. http://dx.doi.org/10.1109/pc2.2017.8283359.
Der volle Inhalt der QuelleNähle, L., M. von Edlinger, J. Scheuermann, R. Weih, M. Fischer, J. Koeth, M. Kamp und S. Höfling. „Interband Cascade Laser Based Sensing“. In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/lacsea.2016.lw3g.2.
Der volle Inhalt der QuelleNähle, L., M. von Edlinger, J. Scheuermann, M. Fischer, J. Koeth, R. Weih und M. Kamp. „Interband Cascade Laser Based Sensing“. In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/boda.2015.ot1c.4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interband Cascade Laser (ICL)"
Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507657.
Der volle Inhalt der QuelleTober, Richard L., Carlos Monroy, Kimberly Olver und John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428728.
Der volle Inhalt der Quelle