Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interactive Multiple Model algorithm“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interactive Multiple Model algorithm" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interactive Multiple Model algorithm"
Liu, Qiaoran, und Xun Yang. „Improved Interacting Multiple Model Particle Filter Algorithm“. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 36, Nr. 1 (Februar 2018): 169–75. http://dx.doi.org/10.1051/jnwpu/20183610169.
Der volle Inhalt der QuelleLim, Jaechan, Hun-Seok Kim und Hyung-Min Park. „Interactive-Multiple-Model Algorithm Based on Minimax Particle Filtering“. IEEE Signal Processing Letters 27 (2020): 36–40. http://dx.doi.org/10.1109/lsp.2019.2954000.
Der volle Inhalt der QuelleZhu, Meiyu, Guanyu Chen und Weicun Zhang. „Maneuvering target tracking with improved interactive multiple model algorithm“. Proceedings of International Conference on Artificial Life and Robotics 26 (21.01.2021): 373–76. http://dx.doi.org/10.5954/icarob.2021.os6-5.
Der volle Inhalt der QuelleLi, Jihan, Xiaoli Li und Kang Wang. „Atmospheric PM2.5Concentration Prediction Based on Time Series and Interactive Multiple Model Approach“. Advances in Meteorology 2019 (15.10.2019): 1–11. http://dx.doi.org/10.1155/2019/1279565.
Der volle Inhalt der QuelleFunkhouser, Thomas, Seth Teller, Carlo Séquin und Delnaz Khorramabadi. „The UC Berkeley System for Interactive Visualization of Large Architectural Models“. Presence: Teleoperators and Virtual Environments 5, Nr. 1 (Januar 1996): 13–44. http://dx.doi.org/10.1162/pres.1996.5.1.13.
Der volle Inhalt der QuelleWan, Jian, Peiwen Ren und Qiang Guo. „Application of Interactive Multiple Model Adaptive Five-Degree Cubature Kalman Algorithm Based on Fuzzy Logic in Target Tracking“. Symmetry 11, Nr. 6 (05.06.2019): 767. http://dx.doi.org/10.3390/sym11060767.
Der volle Inhalt der QuelleLiu, J., und R. Li. „Hierarchical adaptive interacting multiple model algorithm“. IET Control Theory & Applications 2, Nr. 6 (01.06.2008): 479–87. http://dx.doi.org/10.1049/iet-cta:20070340.
Der volle Inhalt der QuelleQu, HongQuan, LiPing Pang und ShaoHong Li. „A novel interacting multiple model algorithm“. Signal Processing 89, Nr. 11 (November 2009): 2171–77. http://dx.doi.org/10.1016/j.sigpro.2009.04.033.
Der volle Inhalt der QuelleShen, Nan, Liang Chen, Xiangchen Lu, Hao Hu, Yuanjin Pan, Zhouzheng Gao, Xiaoyan Liu, Zhaoliang Liu und Ruizhi Chen. „Online displacement extraction and vibration detection based on interactive multiple model algorithm“. Mechanical Systems and Signal Processing 155 (Juni 2021): 107581. http://dx.doi.org/10.1016/j.ymssp.2020.107581.
Der volle Inhalt der QuellePan, Quan, Yan Liang, Gang Liu, Hongcai Zhang und Guanzhong Dai. „Performance analysis of interacting multiple model algorithm“. IFAC Proceedings Volumes 32, Nr. 2 (Juli 1999): 3932–37. http://dx.doi.org/10.1016/s1474-6670(17)56671-9.
Der volle Inhalt der QuelleDissertationen zum Thema "Interactive Multiple Model algorithm"
Munir, Arshed. „Manoeuvring target tracking using different forms of the interacting multiple model algorithm“. Thesis, University of Sussex, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240430.
Der volle Inhalt der QuelleAlat, Gokcen. „A Variable Structure - Autonomous - Interacting Multiple Model Ground Target Tracking Algorithm In Dense Clutter“. Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615512/index.pdf.
Der volle Inhalt der Quelleincorporate a priori information such as topographic constraints, road maps as much as possible
use enhanced gating techniques to minimize the eect of clutter
develop methods against stop-move motion and hide motion of the target
tackle on-road/o-road transitions and junction crossings
establish measures against non-detections caused by environment. The tracker structure is derived using a composite state estimation set-up that incorporate multi models and MAP and MMSE estimations. The root mean square position and velocity error performances of the VS-A-IMM algorithm are compared with respect to the baseline IMM and the VS-IMM methods found in the literature. It is observed that the newly developed VS-A-IMM algorithm performs better than the baseline methods in realistic conditions such as on-road/o-road transitions, tunnels, stops, junction crossings, non-detections.
Benko, Matej. „Hledaní modelů pohybu a jejich parametrů pro identifikaci trajektorie cílů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445467.
Der volle Inhalt der QuelleEge, Emre. „A Comparative Study Of Tracking Algorithms In Underwater Environment Using Sonar Simulation“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608866/index.pdf.
Der volle Inhalt der Quelles true state based on a time history of noisy sensor observations. In real life, the sensor data may include substantial noise. This noise can render the raw sensor data unsuitable to be used directly. Instead, we must filter the noise, preferably in an optimal manner. For land, air and surface marine vehicles, very successful filtering methods are developed. However, because of the significant differences in the underwater propagation environment and the associated differences in the corresponding sensors, the successful use of similar principles and techniques in an underwater scenario is still an active topic of research. A comparative study of the effects of the underwater environment on a number of tracking algorithms is the focus of the present thesis. The tracking algorithms inspected are: the Kalman Filter, the Extended Kalman Filter and the Particle Filter. We also investigate in particular the IMM extension to KF and EKF filters. These algorithms are tested under several underwater environment scenarios.
Rastgoufard, Rastin. „The Interacting Multiple Models Algorithm with State-Dependent Value Assignment“. ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/td/1477.
Der volle Inhalt der QuelleSahin, Mehmet Alper. „Performance Optimization Of Monopulse Tracking Radar“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605364/index.pdf.
Der volle Inhalt der QuelleAslan, Murat Samil. „Tracker-aware Detection: A Theoretical And An Experimental Study“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610474/index.pdf.
Der volle Inhalt der QuelleCanolla, Adriano. „Interactive Multiple Model Estimation for Unmanned Aircraft Systems Detect and Avoid“. Thesis, Illinois Institute of Technology, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13419136.
Der volle Inhalt der QuelleThis research presents new methods to apply safety standards to Detect and Avoid (DAA) functions for Unmanned Aircraft Systems (UAS), using maneuvering target tracking and encounter models.
Previous DAA research methods focused on predefined, linear encounter generation. The new estimation and prediction methods in this research are based on the target tracking of maneuvering intruders using Multiple Model Adaptive Estimation and a realistic random encounter generation based on an established encounter model.
When tracking maneuvering intruders there is limited knowledge of changes in intruder behavior beyond the current measurement. The standard Kalman filter (KF) with a single motion model is limited in performance for such problems due to ineffective responses as the target maneuvers. In these cases, state estimation can be improved using MMAE. It is assumed that the current active dynamic model is one of a discrete set of models, each of which is the basis for a separate filter. These filters run in parallel to estimate the states of targets with changing dynamics.
In practical applications of multiple model systems, one of the most popular algorithms for the MMAE is the Interacting Multiple Model (IMM) estimator. In the IMM, the regime switching is modeled by a finite state homogeneous Markov Chain. This is represented by a transition probability matrix characterizing the mode transitions. A Markov Chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the previous event.
This research uses the hazard states estimates (which are derived from DAA standards) to analyze the IMM performance, and then presents a new method to predict the hazard states. To reduce the prediction error, this new method accounts for maneuvering intruders. The new prediction method uses the prediction phase in the IMM algorithm to predict the future intruder aircraft states based on the current and past sensor measurements.
The estimation and prediction methods described in this thesis can help ensure safe encounters between UAS and manned aircraft in the National Airspace System through improvement of the trajectory estimation used to inform the DAA sensor certification process.
Vince, Robert Johnston. „An electromagnetic radome model using an interactive micro-computer finite element algorithm“. Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25893.
Der volle Inhalt der QuelleCaglar, Musa. „Multiple Criteria Project Selection Problems“. Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610945/index.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Interactive Multiple Model algorithm"
Julien, Benoît. A fuzzy interactive screening model for multiple attribute decision-making. Ottawa: National Library of Canada, 1990.
Den vollen Inhalt der Quelle findenVince, Robert Johnston. An electromagnetic radome model using an interactive micro-computer finite element algorithm. Monterey, Calif: Naval Postgraduate School, 1989.
Den vollen Inhalt der Quelle findenLincoln, Patrick. A formally verified algorithm for interactive consistency under a hybrid fault model. Hampton, Va: Langley Research Center, 1993.
Den vollen Inhalt der Quelle findenA Novel Electrocardiogram Segmentation Algorithm Using a Multiple Model Adaptive Estimator. Storming Media, 2002.
Den vollen Inhalt der Quelle findenArnold, Robert M., Anthony L. Back, Walter F. Baile, Kelly A. Edwards und James A. Tulsky. The Oncotalk/Vitaltalk model. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198736134.003.0056.
Der volle Inhalt der QuelleBuchteile zum Thema "Interactive Multiple Model algorithm"
Zhang, Yang, und Yuncai Liu. „Traffic Forecasts Using Interacting Multiple Model Algorithm“. In Next-Generation Applied Intelligence, 360–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02568-6_37.
Der volle Inhalt der QuelleWei, Wenqiang, Jidong Suo und Xiaoming Liu. „An Improved Interacting Multiple Model Algorithm Based on Switching of AR Model Set“. In Lecture Notes in Electrical Engineering, 459–66. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6504-1_56.
Der volle Inhalt der QuelleHussain, D. M. Akbar, Shaiq A. Haq, M. Zafar Ullah Khan und Zaki Ahmed. „Case Study: Investigating the Performance of Interactive Multiple Motion Model Algorithm for a Crossing Target Scenario“. In Wireless Networks, Information Processing and Systems, 332–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89853-5_36.
Der volle Inhalt der QuelleSong, Liping, und Hongbing Ji. „Least Squares Interacting Multiple Model Algorithm for Passive Multi-sensor Maneuvering Target Tracking“. In Lecture Notes in Computer Science, 479–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11881070_66.
Der volle Inhalt der QuelleAmoozgar, Mohammad Hadi, Abbas Chamseddine und Youmin M. Zhang. „Experimental Test of an Interacting Multiple Model Filtering Algorithm for Actuator Fault Detection and Diagnosis of an Unmanned Quadrotor Helicopter“. In Intelligent Robotics and Applications, 473–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33509-9_47.
Der volle Inhalt der QuelleGhannem, Adnane, Ghizlane El Boussaidi und Marouane Kessentini. „Model Refactoring Using Interactive Genetic Algorithm“. In Search Based Software Engineering, 96–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39742-4_9.
Der volle Inhalt der QuelleNarula, Subhash C., Leonid Kirilov und Vassil Vassilev. „An Interactive Algorithm for Solving Multiple Objective Nonlinear Programming Problems“. In Multiple Criteria Decision Making, 119–27. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2666-6_13.
Der volle Inhalt der QuelleKang, Hyun-Soo. „A Fast Successive Elimination Algorithm for Multiple Reference Images“. In Interactive Multimedia and Next Generation Networks, 187–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30493-7_17.
Der volle Inhalt der QuelleDurso, Anthony. „An Interactive Combined Branch-and-Bound/Tchebycheff Algorithm for Multiple Criteria Optimization“. In Multiple Criteria Decision Making, 107–22. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2918-6_9.
Der volle Inhalt der QuellePan, Zhaoqing, Sam Kwong und Yun Zhang. „A Multiple Hexagon Search Algorithm for Motion and Disparity Estimation in Multiview Video Coding“. In The Era of Interactive Media, 113–22. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3501-3_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interactive Multiple Model algorithm"
Wang, Weijie, Shengli Wang und Zhi Zhang. „Improved Adaptive Grid Interactive Multiple Model Algorithm based on Maneuverability Division“. In 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2021. http://dx.doi.org/10.1109/iaeac50856.2021.9391035.
Der volle Inhalt der QuelleLiu, Jianshu, und Renhou Li. „A Hierarchical Adaptive Interacting Multiple Model Algorithm“. In 2007 IEEE International Symposium on Signal Processing and Information Technology. IEEE, 2007. http://dx.doi.org/10.1109/isspit.2007.4458122.
Der volle Inhalt der QuelleJi, Bing, Gan-lin Shan und Hai Chen. „A yaw-aided interacting multiple model tracking algorithm“. In 2012 5th International Congress on Image and Signal Processing (CISP). IEEE, 2012. http://dx.doi.org/10.1109/cisp.2012.6469912.
Der volle Inhalt der QuelleChze Eng Seah und Inseok Hwang. „Stability analysis of the Interacting Multiple Model algorithm“. In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4586853.
Der volle Inhalt der QuelleHe Yan, Guo Zhi-jiang und Jiang Jing-ping. „Design of the adaptive interacting multiple model algorithm“. In Proceedings of 2002 American Control Conference. IEEE, 2002. http://dx.doi.org/10.1109/acc.2002.1023240.
Der volle Inhalt der QuelleLi, X. Rong, und Yaakov Bar-Shalom. „Performance Prediction of the Interacting Multiple Model Algorithm“. In 1992 American Control Conference. IEEE, 1992. http://dx.doi.org/10.23919/acc.1992.4792500.
Der volle Inhalt der QuelleWatson, Gregory A., und W. Dale Blair. „Tracking maneuvering targets with multiple sensors using the interacting multiple model algorithm“. In Optical Engineering and Photonics in Aerospace Sensing, herausgegeben von Oliver E. Drummond. SPIE, 1993. http://dx.doi.org/10.1117/12.157781.
Der volle Inhalt der QuelleWang, Shuai, Xiaocun Guan, Denghua Guo und Shaohua Guan. „Position Detection Method of Linear Motor Based on Interactive Multiple Model Cubature Kalman Filter Algorithm“. In 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2019. http://dx.doi.org/10.1109/icems.2019.8922386.
Der volle Inhalt der QuelleTianlai, Xu, und Cui Pingyuan. „Fuzzy Adaptive Interacting Multiple Model Algorithm for INS/GPS“. In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4304031.
Der volle Inhalt der QuelleZhang Yuan, Dong Shou-quan, Yang Xing-bao, Liu Shu-bo und Chu Jun-bo. „Interacting multiple model algorithm based on S-amended UKF“. In 2014 11th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2014. http://dx.doi.org/10.1109/wcica.2014.7053351.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interactive Multiple Model algorithm"
Chapman, Ray, Phu Luong, Sung-Chan Kim und Earl Hayter. Development of three-dimensional wetting and drying algorithm for the Geophysical Scale Transport Multi-Block Hydrodynamic Sediment and Water Quality Transport Modeling System (GSMB). Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41085.
Der volle Inhalt der QuelleAmela, R., R. Badia, S. Böhm, R. Tosi, C. Soriano und R. Rossi. D4.2 Profiling report of the partner’s tools, complete with performance suggestions. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.023.
Der volle Inhalt der QuelleOver, Thomas, Riki Saito, Andrea Veilleux, Padraic O’Shea, Jennifer Sharpe, David Soong und Audrey Ishii. Estimation of Peak Discharge Quantiles for Selected Annual Exceedance Probabilities in Northeastern Illinois. Illinois Center for Transportation, Juni 2016. http://dx.doi.org/10.36501/0197-9191/16-014.
Der volle Inhalt der Quelle