Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Interacting particles systems.

Bücher zum Thema „Interacting particles systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Bücher für die Forschung zum Thema "Interacting particles systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kipnis, Claude. Scaling limits of interacting particle systems. New York: Springer, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Salabura, Piotr. Vector mesons in strongly interacting systems. Kraków: Wydawn. Uniwersytetu Jagiellońskiego, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liggett, Thomas M. Interacting particle systems. Berlin: Springer, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8542-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liggett, Thomas M. Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

1938-, Arenhövel H., Hrsg. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kipnis, Claude, und Claudio Landim. Scaling Limits of Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03752-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Papanicolaou, George, Hrsg. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

George, Papanicolaou, und University of Minnesota. Institute for Mathematics and its Applications., Hrsg. Hydrodynamic behavior and interacting particle systems. New York: Springer-Verlag, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Papanicolaou, G. C. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Durrett, Rick, und Harry Kesten, Hrsg. Random Walks, Brownian Motion, and Interacting Particle Systems. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0459-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Moral, Pierre. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. New York, NY: Springer New York, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Moral, Pierre Del. Feynman-Kac formulae: Genealogical and interacting particle systems with applications. New York: Springer-Verlag, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jürgen, Tomas, und SpringerLink (Online service), Hrsg. Micro-Macro-interaction: In Structured media and Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

1951-, Durrett Richard, Kesten Harry 1931- und Spitzer Frank 1926-, Hrsg. Random walks, Brownian motion, and interacting particle systems: A festschrift in honor of Frank Spitzer. Boston: Birkhäuser, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Andreani, L. C., und Elisa Molinari. Radiation matter interaction in confined system: Dedicated to the memory of Giovanna Panzarini. Bologna: Società Italiana di Fisica, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

1947-, Accardi L., Fagnola Franco und Centro internazionale per la ricerca matematica (Trento, Italy), Hrsg. Quantum interacting particle systems: Lecture notes of the Volterra-CIRM International School, Trento, Italy, 23-29 September 2000. River Edge, NJ: World Scientific Pub., 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Tripathi, Ratikanta. Universal parameterization of absorption cross sections: Light systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Herrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kipnis, Claude, und Claudio Landim. Scaling Limits of Interacting Particle Systems. Springer London, Limited, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Morawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.

Der volle Inhalt der Quelle
Annotation:
In quantum statistics based on many-body Green’s functions, the effective medium is represented by the selfenergy. This book aims to discuss the selfenergy from this point of view. The knowledge of the exact selfenergy is equivalent to the knowledge of the exact correlation function from which one can evaluate any single-particle observable. Complete interpretations of the selfenergy are as rich as the properties of the many-body systems. It will be shown that classical features are helpful to understand the selfenergy, but in many cases we have to include additional aspects describing the internal dynamics of the interaction. The inductive presentation introduces the concept of Ludwig Boltzmann to describe correlations by the scattering of many particles from elementary principles up to refined approximations of many-body quantum systems. The ultimate goal is to contribute to the understanding of the time-dependent formation of correlations. Within this book an up-to-date most simple formalism of nonequilibrium Green’s functions is presented to cover different applications ranging from solid state physics (impurity scattering, semiconductor, superconductivity, Bose–Einstein condensation, spin-orbit coupled systems), plasma physics (screening, transport in magnetic fields), cold atoms in optical lattices up to nuclear reactions (heavy-ion collisions). Both possibilities are provided, to learn the quantum kinetic theory in terms of Green’s functions from the basics using experiences with phenomena, and experienced researchers can find a framework to develop and to apply the quantum many-body theory straight to versatile phenomena.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Interacting Bose-Fermi Systems in Nuclei. Springer, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Iachello, F. Interacting Bose-Fermi Systems in Nuclei. Springer London, Limited, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Iachello, F. Interacting Bose-Fermi Systems in Nuclei. Springer, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Many Body Structure of Strongly Interacting Systems: Refereed and Selected Contributions from the Symposium "20 Years of Physics at the Mainz Microtron MAMI". Springer, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Liggett, Thomas M. Interacting Particle Systems. Springer, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Interacting Particle Systems. Springer, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Interacting particle systems. New York: Springer-Verlag, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Interacting particle systems. New York: Springer-Verlag, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Accardi, Luigi, und Franco Fagnola. Quantum Interacting Particle Systems. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/5055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Quantum Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Birkner, Matthias, Rongfeng Sun und Jan M. Swart. Genealogies of Interacting Particle Systems. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/11439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Birkner, Matthias, Rongfeng Sun und Jan M. Swart. Genealogies of Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Konno, N. Phase Transitions of Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Phase transitions of interacting particle systems. Singapore: World Scientific, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hydrodynamic Behavior and Interacting Particle Systems. Springer, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Interacting Particle Systems (Classics in Mathematics). Springer, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Griffeath, D. Additive and Cancellative Interacting Particle Systems. Springer London, Limited, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Phase Transitions of Interacting Particle Systems. World Scientific Publishing Co Pte Ltd, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Random Matrix Theory, Interacting Particle Systems and Integrable Systems. Cambridge University Press, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Random Walks, Brownian Motion, and Interacting Particle Systems. Island Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Interacting Particle Systems at SaintFlour Probability at SaintFlour. Springer, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kolanoski, Hermann, und Norbert Wermes. Particle Detectors. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198858362.001.0001.

Der volle Inhalt der Quelle
Annotation:
The book describes the fundamentals of particle detectors in their different forms as well as their applications, presenting the abundant material as clearly as possible and as deeply as needed for a thorough understanding. The target group for the book are both, students who want to get an introduction or wish to deepen their knowledge on the subject as well as lecturers and researchers who intend to extent their expertise. The book is also suited as a preparation for instrumental work in nuclear, particle and astroparticle physics and in many other fields (addressed in chapter 2). The detection of elementary particles, nuclei and high-energetic electromagnetic radiation, in this book commonly designated as ‘particles’, proceeds through interactions of the particles with matter. A detector records signals originating from the interactions occurring in or near the detector and (in general) feeds them into an electronic data acquisition system. The book describes the various steps in this process, beginning with the relevant interactions with matter, then proceeding to their exploitation for different detector types like tracking detectors, detectors for particle identification, detectors for energy measurements, detectors in astroparticle experiments, and ending with a discussion of signal processing and data acquisition. Besides the introductory and overview chapters (chapters 1 and 2), the book is divided into five subject areas: – fundamentals (chapters 3 to 5), – detection of tracks of charged particles (chapters 6 to 9), – phenomena and methods mainly applied for particle identification (chapters 10 to 14), – energy measurement (accelerator and non-accelerator experiments) (chapters 15, 16), – electronics and data acquisition (chapters 17 and 18). Comprehensive lists of literature, keywords and abbreviations can be found at the end of the book.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Moral, Pierre Del. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer New York, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Morawetz, Klaus. Scattering on a Single Impurity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0004.

Der volle Inhalt der Quelle
Annotation:
Evolution of a many-body system consists of permanent collisions among particles. Looking at the motion of a single particle, one can identify encounters by which a particle abruptly changes the direction of flight, these are seen as true collisions, and small-angle encounters, which in sum act as an applied force rather than randomising collisions. The scattering on impurities is used to introduce the mentioned mechanisms and, in particular, to show how they affect each other. Point impurities are assumed, i.e. impurities the potential of which is restricted to a single atomic site of the crystal lattice. In this case interaction potentials never overlap and many-body effects are due to nonlocal character of the quantum particle. To introduce elementary components of the formalism, in this chapter we first describe the interaction of an electron with a single impurity. Lippman–Schwinger equations are derived and the physics behind the collision delay, dissipativeness and optical theorems is explored.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Bertram, Albrecht, und Jürgen Tomas. Micro-Macro-Interactions: In Structured Media and Particle Systems. Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Scaling Limits of Interacting Particle Systems Grundlehren Der Mathematischen Wissenschaften Springer. Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Horing, Norman J. Morgenstern. Equations of Motion with Particle–Particle Interactions and Approximations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0008.

Der volle Inhalt der Quelle
Annotation:
Starting with the equation of motion for the field operator ψ(x,t) of an interacting many-particle system, the n-particle Green’s function (Gn) equation of motion is developed, with interparticle interactions generating an infinite chain of equations coupling it to (n+1)- and (n−1)-particle Green’s functions (Gn+1 and Gn−1, respectively). Particularly important are the one-particle Green’s function equation with its coupling to the two-particle Green’s function and the two-particle Green’s function equation with its coupling to the three-particle Green’s function. To develop solutions, it is necessary to introduce non-correlation decoupling procedures involving the Hartree and Hartree-Fock approximations for G2 in the G1 equation; and a similar factorization “ansatz” for G3 in the G2 equation, resulting in the Sum of Ladder Diagrams integral equation for G2, with multiple Born iterates and finite collisional lifetimes. Similar treatment of the G11-equation for the joint propagation of one-electron and one-hole subject to mutual Coulomb attraction leads to bound electron-hole exciton states having a discrete hydrogen like spectrum of energy eigenstates. Its role in single-particle propagation is also discussed in terms of one-electron self-energy Σ‎ and the T-matrix
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Der volle Inhalt der Quelle
Annotation:
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle sources leads to a chain of coupled Green’s function equations involving differing species of Green’s functions. For example, the 1-electron Green’s function equation is coupled to the 2-electron Green’s function (as earlier), also to the 1-electron/1-hole Green’s function, and to the Green’s function for 1-electron propagation influenced by a nontrivial phonon field. Similar remarks apply to the 1-hole Green’s function equation, and all others. Higher order Green’s function equations are derived by further variational differentiation with respect to sources, yielding additional couplings. Chapter 11 also introduces the 1-phonon Green’s function, emphasizing the role of electron coupling in phonon propagation, leading to dynamic, nonlocal electron screening of the phonon spectrum and hybridization of the ion and electron plasmons, a Bohm-Staver phonon mode, and the Kohn anomaly. Furthermore, the single-electron Green’s function with only phonon coupling can be rewritten, as usual, coupled to the 2-electron Green’s function with an effective time-dependent electron-electron interaction potential mediated by the 1-phonon Green’s function, leading to the polaron as an electron propagating jointly with its induced lattice polarization. An alternative formulation of the coupled Green’s function equations for the electron-hole-phonon model is applied in the development of a generalized shielded potential approximation, analysing its inverse dielectric screening response function and associated hybridized collective modes. A brief discussion of the (theoretical) origin of the exciton-plasmon interaction follows.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie