Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interacting particles systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interacting particles systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interacting particles systems"
Karmanov, Vladimir A. „Abnormal Bound Systems“. Universe 8, Nr. 2 (03.02.2022): 95. http://dx.doi.org/10.3390/universe8020095.
Der volle Inhalt der QuelleAbadi, Noam, und Franco Ruzzenenti. „Complex Networks and Interacting Particle Systems“. Entropy 25, Nr. 11 (27.10.2023): 1490. http://dx.doi.org/10.3390/e25111490.
Der volle Inhalt der QuelleSudbury, Aidan. „The survival of various interacting particle systems“. Advances in Applied Probability 25, Nr. 4 (Dezember 1993): 1010–12. http://dx.doi.org/10.2307/1427804.
Der volle Inhalt der QuelleSudbury, Aidan. „The survival of various interacting particle systems“. Advances in Applied Probability 25, Nr. 04 (Dezember 1993): 1010–12. http://dx.doi.org/10.1017/s0001867800025878.
Der volle Inhalt der QuelleItoh, Yoshiaki, Colin Mallows und Larry Shepp. „Explicit sufficient invariants for an interacting particle system“. Journal of Applied Probability 35, Nr. 3 (September 1998): 633–41. http://dx.doi.org/10.1239/jap/1032265211.
Der volle Inhalt der QuelleItoh, Yoshiaki, Colin Mallows und Larry Shepp. „Explicit sufficient invariants for an interacting particle system“. Journal of Applied Probability 35, Nr. 03 (September 1998): 633–41. http://dx.doi.org/10.1017/s0021900200016284.
Der volle Inhalt der QuelleMETZNER, WALTER, und CLAUDIO CASTELLANI. „TWO PARTICLE CORRELATIONS AND ORTHOGONALITY CATASTROPHE IN INTERACTING FERMI SYSTEMS“. International Journal of Modern Physics B 09, Nr. 16 (20.07.1995): 1959–83. http://dx.doi.org/10.1142/s021797929500080x.
Der volle Inhalt der QuelleMorvan, A., T. I. Andersen, X. Mi, C. Neill, A. Petukhov, K. Kechedzhi, D. A. Abanin et al. „Formation of robust bound states of interacting microwave photons“. Nature 612, Nr. 7939 (07.12.2022): 240–45. http://dx.doi.org/10.1038/s41586-022-05348-y.
Der volle Inhalt der QuelleSKOROHOD, A. V. „Infinite systems of randomly interacting particles“. Random Operators and Stochastic Equations 1, Nr. 1 (1993): 1–14. http://dx.doi.org/10.1515/rose.1993.1.1.1.
Der volle Inhalt der QuelleKarwowski, Jacek, und Kamil Szewc. „Quasi-Exactly Solvable Models in Quantum Chemistry“. Collection of Czechoslovak Chemical Communications 73, Nr. 10 (2008): 1372–90. http://dx.doi.org/10.1135/cccc20081372.
Der volle Inhalt der QuelleDissertationen zum Thema "Interacting particles systems"
Glass, K. „Dynamics of systems of interacting particles“. Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599435.
Der volle Inhalt der QuelleFranz, Benjamin. „Recent modelling frameworks for systems of interacting particles“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ac76d159-4cdd-40c9-b378-6ea1faf48aed.
Der volle Inhalt der QuelleRomanovsky, Igor Alexandrovich. „Novel properties of interacting particles in small low-dimensional systems“. Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07102006-041659/.
Der volle Inhalt der QuelleLandman, Uzi, Committee Member ; Yannouleas, Constantine, Committee Member ; Bunimovich, Leonid, Committee Member ; Chou, Mei-Yin, Committee Member ; Pustilnik, Michael, Committee Member.
Jacquot, Stéphanie Mireille. „Large systems of interacting particles : the Marcus-Lushnikov process and the β-Laguerre ensemble“. Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610327.
Der volle Inhalt der QuelleGeiger, Benjamin [Verfasser], und Klaus [Akademischer Betreuer] Richter. „From few to many particles: Semiclassical approaches to interacting quantum systems / Benjamin Geiger ; Betreuer: Klaus Richter“. Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215906064/34.
Der volle Inhalt der QuelleLafleche, Laurent. „Dynamique de systèmes à grand nombre de particules et systèmes dynamiques“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED010.
Der volle Inhalt der QuelleIn this thesis, we study the behavior of solutions of partial differential equations that arise from the modeling of systems with a large number of particles. The dynamic of all these systems is driven by interaction between the particles and external and internal forces. However, we will consider different scales and travel from the quantum level of atoms to the macroscopic level of stars. We will see that differences emerge from the associated dynamics even though the main properties are conserved. In this journey, we will cross the path of various applications of these equations such as astrophysics, plasma, semi-conductors, biology, economy. This work is divided in three parts.In the first one, we study the semi classical behavior of the quantum Hartree equation and its limit to the kinetic Vlasov equation. Properties such as the propagation of moments and weighted Lebesgue norms and dispersive estimates are quantified uniformly in the Planck constant and used to establish stability estimates in a semiclassical analogue of the Wasserstein distance between the solutions of these two equations.In the second part, we investigate the long time behavior of macroscopic and kinetic models where the collision operatoris linear and has a heavy-tailed local equilibrium, such as the Fokker-Planck operator, the fractional Laplacian with a driftor a Linear Boltzmann operator. This let appear two main techniques, the entropy method and the positivity method.In the third part, we are interested in macroscopic models inspired from the Keller-Segel equation, and we study therange of parameters under which the system collapses, disperses or stabilizes. The first effect is studied using appropriate weights, the second using Wasserstein distances and the third using Lebesgue norms
Gracar, Peter. „Random interacting particle systems“. Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761028.
Der volle Inhalt der QuelleDeshayes, Aurélia. „Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact“. Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168/document.
Der volle Inhalt der QuelleThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Wang, Hao Carleton University Dissertation Mathematics and Statistics. „Interacting branching particle systems and superprocesses“. Ottawa, 1995.
Den vollen Inhalt der Quelle findenDeshayes, Aurélia. „Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact“. Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168.
Der volle Inhalt der QuelleThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Bücher zum Thema "Interacting particles systems"
Kipnis, Claude. Scaling limits of interacting particle systems. New York: Springer, 1999.
Den vollen Inhalt der Quelle findenSalabura, Piotr. Vector mesons in strongly interacting systems. Kraków: Wydawn. Uniwersytetu Jagiellońskiego, 2003.
Den vollen Inhalt der Quelle findenLiggett, Thomas M. Interacting particle systems. Berlin: Springer, 2005.
Den vollen Inhalt der Quelle findenLiggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8542-4.
Der volle Inhalt der QuelleLiggett, Thomas M. Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138374.
Der volle Inhalt der QuelleLiggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985.
Den vollen Inhalt der Quelle finden1938-, Arenhövel H., Hrsg. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.
Den vollen Inhalt der Quelle findenKipnis, Claude, und Claudio Landim. Scaling Limits of Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03752-2.
Der volle Inhalt der QuellePapanicolaou, George, Hrsg. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7.
Der volle Inhalt der QuelleGeorge, Papanicolaou, und University of Minnesota. Institute for Mathematics and its Applications., Hrsg. Hydrodynamic behavior and interacting particle systems. New York: Springer-Verlag, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Interacting particles systems"
Liverani, C. „Interacting Particles“. In Hard Ball Systems and the Lorentz Gas, 179–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04062-1_8.
Der volle Inhalt der QuelleNolting, Wolfgang, und William D. Brewer. „Systems of Interacting Particles“. In Fundamentals of Many-body Physics, 197–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71931-1_4.
Der volle Inhalt der QuelleNolting, Wolfgang. „Systems of Interacting Particles“. In Theoretical Physics 9, 205–319. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98326-4_4.
Der volle Inhalt der QuelleCichocki, B. „Interacting Brownian Particles“. In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 65–71. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_5.
Der volle Inhalt der QuelleSkorohod, A. V. „Randomly Interacting Systems Of Particles“. In Stochastic Equations for Complex Systems, 67–169. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3767-3_2.
Der volle Inhalt der QuelleGuo, M. Z., und G. Papanicolaou. „Bulk Diffusion for Interacting Brownian Particles“. In Statistical Physics and Dynamical Systems, 41–48. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6653-7_3.
Der volle Inhalt der QuelleMikhailov, Alexander S., und Gerhard Ertl. „Systems with Interacting Particles and Soft Matter“. In Chemical Complexity, 159–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57377-9_11.
Der volle Inhalt der QuelleSpohn, Herbert. „Interacting Brownian Particles: A Study of Dyson’s Model“. In Hydrodynamic Behavior and Interacting Particle Systems, 151–79. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_13.
Der volle Inhalt der QuelleChaikin, P. M., W. D. Dozier und H. M. Lindsay. „Experiments on Suspensions of Interacting Particles in Fluids“. In Hydrodynamic Behavior and Interacting Particle Systems, 13–24. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_2.
Der volle Inhalt der QuelleSergeev, Y. A. „Nonlinear Concentration Waves in Fluidized Beds of Interacting Particles“. In Mobile Particulate Systems, 233–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8518-7_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interacting particles systems"
Izrailev, F. M. „Regular versus chaotic dynamics in closed systems of interacting Fermi particles“. In NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physics: WNMP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1996878.
Der volle Inhalt der QuelleHerrera, Dianela, und Sergio Curilef. „Numerical study of a Vlasov equation for systems with interacting particles“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912388.
Der volle Inhalt der QuelleKim, Bongsoo, Kyozi Kawasaki, Michio Tokuyama, Irwin Oppenheim und Hideya Nishiyama. „A FDR-Preserving Field Theory for Interacting Brownian Particles: One-Loop Theory and MCT“. In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897790.
Der volle Inhalt der QuelleCARMONA, J. M., N. MICHEL, J. RICHERT und P. WAGNER. „NUCLEAR FRAGMENTATION, PHASE TRANSITIONS AND THEIR CHARACTERIZATION IN FINITE SYSTEMS OF INTERACTING PARTICLES“. In Proceedings of the Conference “Bologna 2000: Structure of the Nucleus at the Dawn of the Century”. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810939_0023.
Der volle Inhalt der QuelleBriegel, Hans. „Entanglement in quantum many-body systems far away from thermodynamic equilibrium“. In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.
Der volle Inhalt der QuelleIzrailev, F. M. „Quantum-Classical Correspondence for Isolated Systems of Interacting Particles: Localization and Ergodicity in Energy Space“. In Proceedings of Nobel Symposium 116. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811004_0014.
Der volle Inhalt der QuelleSzamel, Grzegorz, Michio Tokuyama, Irwin Oppenheim und Hideya Nishiyama. „Diagrammatic Approach to the Dynamics of Interacting Brownian Particles: Mode-Coupling Theory, Generalized Mode-Coupling Theory, and All That“. In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897869.
Der volle Inhalt der QuelleOzyer, Baris, Ismet Erkmen und Aydan M. Erkmen. „Catching Continuum Between Preshape and Grasping Based on Fluidics“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24632.
Der volle Inhalt der QuelleAgarwal, Gaurav, Brian Lattimer, Srinath Ekkad und Uri Vandsburger. „Grid-Zone Particle Hydrodynamics and Solid Circulation in a Multiple Jet Fluidized Bed“. In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72066.
Der volle Inhalt der QuelleNavakas, Robertas, und Algis Džiugys. „A community detection method for network structure analysis of force chains in granular medium in a rotating drum“. In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.079.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interacting particles systems"
Pullammanappallil, Pratap, Haim Kalman und Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Der volle Inhalt der QuelleVaradhan, S. R. Interacting Particle Systems and Their Scaling Limits. Fort Belvoir, VA: Defense Technical Information Center, März 1996. http://dx.doi.org/10.21236/ada308783.
Der volle Inhalt der QuelleZhang, Xingyu, Matteo Ciantia, Jonathan Knappett und Anthony Leung. Micromechanical study of potential scale effects in small-scale modelling of sinker tree roots. University of Dundee, Dezember 2021. http://dx.doi.org/10.20933/100001235.
Der volle Inhalt der QuelleAnisimov, Petr Mikhaylovich. Quantum interaction of a few particle system mediated by photons. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1356103.
Der volle Inhalt der QuellePeter J. Mucha. Final Report: Model interacting particle systems for simulation and macroscopic description of particulate suspensions. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/939459.
Der volle Inhalt der QuelleSviratcheva, K. D., und J. P. Draayer. Realistic Two-body Interactions in Many-nucleon Systems: Correlated Motion beyond Single-particle Behavior. Office of Scientific and Technical Information (OSTI), Juni 2006. http://dx.doi.org/10.2172/885281.
Der volle Inhalt der QuelleGrabowski, Wojciech. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1244254.
Der volle Inhalt der QuelleChefetz, Benny, und Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7592117.bard.
Der volle Inhalt der QuelleChefetz, Benny, und Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709883.bard.
Der volle Inhalt der QuelleKollias, Pavlos. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions: Final Report. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1374165.
Der volle Inhalt der Quelle