Auswahl der wissenschaftlichen Literatur zum Thema „Inter-cell interference coordination (ICIC)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inter-cell interference coordination (ICIC)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Inter-cell interference coordination (ICIC)"

1

Yussuff, Abayomi Isiaka O., und Abdul-Rasaq A. Bakare. „Performance evaluation of inter-cell interference prediction in massive MIMO“. Applied Journal of Physical Science 3, Nr. 1 (30.04.2021): 28–36. http://dx.doi.org/10.31248/ajps2021.039.

Der volle Inhalt der Quelle
Annotation:
This paper presents inter-cell interference prediction in massive multiple input multiple output. The rapid demand for widespread multimedia services notwithstanding the deployment of 4G in Lagos, Nigeria and the urgent need to upgrade to 5G networks with downlink and uplink data capacities of not less than 300 and 60 Mbps, respectively for at least 95% penetration rate at any instantaneous time; there is a possibility of experiencing crosstalk and adjacent inter-cell interference within the receiving antennas. 5G inter-cell interference prediction scheme that employs LTE performance index using locally sourced data from Huawei Nigeria limited was presented. The performances of the currently deployed LTE network were evaluated by employing performance metrics such as uplink and downlink capacities and recommending a possible inter-cell interference mitigation technique to be implemented in the deployment of 5G network in Lagos. The identified key performance metrics used include over the air emulation, carrier to interference plus noise ratio, peak RLC throughput, coverage probability, and the map-based model. Hence, ICIC static coordination algorithm, which comprise NOICIC, Hard FFR, PFR, SFR and SFFR were analyzed. With static ICIC algorithm, the coverage probability was 78% for receiving more than 20 kbps, with cell-edge users using resources of centre-users and with edge-users of neighbouring cells using different resource block; therefore reducing interference and consequently increasing throughput when there is static ICIC coordination. Implementing the static ICIC schemes on the 5G network when deployed in Lagos will improve the average downlink throughput over what is currently attainable with the 4G network in use at the moment
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Aal-nouman, Mohammed I., Osamah Abdullah und Noor Qusay A. Al Shaikhli. „Inter-cell interference mitigation using adaptive reduced power subframes in heterogeneous networks“. International Journal of Electrical and Computer Engineering (IJECE) 11, Nr. 4 (01.08.2021): 3275. http://dx.doi.org/10.11591/ijece.v11i4.pp3275-3284.

Der volle Inhalt der Quelle
Annotation:
With the remarkable impact and fast growth of the mobile networks, the mobile base stations have been increased too, especially in the high population areas. These base stations will be overloaded by users, for that reason the small cells (like pico cells) were introduced. However, the inter-cell interference will be high in this type of Heterogeneous networks. There are many solutions to mitigate this interference like the inter-cell interference coordination (ICIC), and then the further enhanced ICIC (Fe-ICIC) where the almost blank subframes are used to give priority to the (victim users). But it could be a waste of bandwidth due to the unused subframes. For that reason, in this paper, we proposed an adaptive reduced power subframe that reduces its power ratio according to the user’s signal-to-interference-plus-noise ratio (SINR) in order to get a better throughput and to mitigate the intercell interference. When the user is far from the cell, the case will be considered as an edge user and will get a higher priority to be served first. The results show that the throughput of all users in the macro cells and pico cell will be improved when applying the proposed scheme in term of throughput for the users and the cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fernández Campo, Betty Nayibe, Lesly Alejandra González Camacho und Claudia Milena Hernández Bonilla. „IMPACTO DEL REUSO DE FRECUENCIA FRACCIONAL EN LA REDUCCIÓN DE INTERFERENCIA INTERCELDA EN LTE.“ Revista de Investigaciones Universidad del Quindío 25, Nr. 1 (31.05.2014): 28–39. http://dx.doi.org/10.33975/riuq.vol25n1.146.

Der volle Inhalt der Quelle
Annotation:
La Interferencia Inter-Celda (ICI, Inter-Cell Interference) es un problema que desafía el desempeño de las redes Evolución a Largo Término (LTE, Long Term Evolution), sin embargo existen técnicas de Coordinación de Interferencia Inter-Celda (ICIC, Inter-Cell Interference Coordination) como el Reuso de Frecuencia Fraccional (FFR, Fractional Frequency Reuse) que permiten mitigar dicha interferencia y mejorar el desempeño de los Equipos de Usuario (UE, User Equipment), especialmente aquellos terminales situados en el borde de la celda. Este artículo analiza el desempeño de la técnica Reuso de Frecuencia Fraccional (FFR) en LTE, en función de dos parámetros de configuración: Umbral de Relación Señal a Ruido más Interferencia (SINR, Signal to Interference plus Noise Ratio) y partición de Ancho de Banda (BW, Band Width). Se evalúa la capacidad e interferencia mediante diagramas de dispersión, curvas de Función de Probabilidad Acumulada Empírica (ECDF, Empirical Cumulative Density Function) y cálculos estadísticos.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kosta, Chrysovalantis, Bernard Hunt, Atta UI Quddus und Rahim Tafazolli. „On Interference Avoidance Through Inter-Cell Interference Coordination (ICIC) Based on OFDMA Mobile Systems“. IEEE Communications Surveys & Tutorials 15, Nr. 3 (2013): 973–95. http://dx.doi.org/10.1109/surv.2012.121112.00037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Jian-Sing, und Jeng-Shin Sheu. „Study of Handover Techniques for 4G Network MIMO Systems“. International Journal of Communications 15 (23.04.2021): 10–16. http://dx.doi.org/10.46300/9107.2021.15.3.

Der volle Inhalt der Quelle
Annotation:
For the upcoming 4G systems, network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC) are two of key techniques adopted in 4G systems to mitigate the serious inter-cell interference (ICI) and improve coverage and cell-edge throughput. Network MIMO is referred to as coordinated multi-point (CoMP) in LTE-A. In this paper, we propose a simulation platform to analyze the handover issue for downlink CoMP transmissions in LTE-A cellular systems. Among the variety of ICIC strategies, we apply the widely adopted soft frequency reuse (SFR) and the fractional frequency reuse (FFR) schemes. Both schemes are based on the idea of applying a frequency reuse factor of one in cell-center areas, and a higher reuse factor in cell-edge areas. Therefore, the ICI is reduced at the expense of the available frequency resources for each cell.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

N. Sirhan, Najem, und Manel Martinez-Ramon. „Radio Resource Management for Eicic, Comp, Relaying and Back-hauls Techniques in LTE-advanced Networks: Concepts and a Literature Survey“. International Journal of Wireless & Mobile Networks 14, Nr. 4 (31.08.2022): 41–61. http://dx.doi.org/10.5121/ijwmn.2022.14404.

Der volle Inhalt der Quelle
Annotation:
Frequency reuse in cells is one of the strategies that LTE (Long Term Evolution) uses to maximize the spectrum efficiency. However, it leads to an interference among the cells, especially at the cell edges where the probability for a cell-edge user to be scheduled on a resource block that is being transmitted by the neighbouring cell is high; consequently, the interference is high. In-order to mitigate Inter-Cell Interference (ICI), Inter-Cell Interference Coordination (ICIC) was proposed by the Third Generation Partnership Project (3GPP) standards for the LTE network, and later on, the enhanced Inter-Cell Interference Coordination (eICIC) was proposed for the LTE-Advanced network. ICIC reduces cell-edge interference on traffic channels from neighbouring cells by the use of three interference reduction schemes that works in the power and frequency domain, and they are based on lowering the power of some channels to limit their reception to the users that are close to the base station, and by reducing the chance of frequency overlap. eICIC was proposed to handle ICI in Heterogeneous Network (HetNet) deployments. It reduces the interference on both the traffic and control channels. It uses power, frequency and also time domain to mitigate intra-frequency interference in HetNets. Another technique that was proposed by the 3GPP for the LTE-Advanced network that can reduce the ICI and improve the cell average and cell-edge user throughput is the Coordinated Multi-Point (CoMP) transmission/reception technique. CoMP can increase the cell average and cell edge user throughput in both the uplink and downlink transmission by joint scheduling and data processing in multiple cells/eNBs. Another technique that was proposed by the 3GPP for the LTE-Advanced network that can improve the LTE network coverage in difficult conditions is to deploy Relay Nodes (RNs). In this paper, we survey Radio Resource Management (RRM) for some of the techniques that are used with LTE-A. The included techniques in this paper are; the ICIC, eICIC, CoMP, Relaying and Back-hauls. We start by explaining the concepts of these techniques. Then, by summarizing the radio resource management approaches that were proposed in the literature for these techniques. And finally, we provide some concluding remarks in the last section.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bin Sediq, Akram, Rainer Schoenen, Halim Yanikomeroglu und Gamini Senarath. „Optimized Distributed Inter-Cell Interference Coordination (ICIC) Scheme Using Projected Subgradient and Network Flow Optimization“. IEEE Transactions on Communications 63, Nr. 1 (Januar 2015): 107–24. http://dx.doi.org/10.1109/tcomm.2014.2367020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Diógenes do Rego, Iago, und Vicente A. de Sousa. „Solution for Interference in Hotspot Scenarios Applying Q-Learning on FFR-Based ICIC Techniques“. Sensors 21, Nr. 23 (27.11.2021): 7899. http://dx.doi.org/10.3390/s21237899.

Der volle Inhalt der Quelle
Annotation:
This work explores interference coordination techniques (inter-cell interference coordination, ICIC) based on fractional frequency reuse (FFR) as a solution for a multi-cellular scenario with user concentration varying over time. Initially, we present the problem of high user concentration along with their consequences. Next, the use of multiple-input multiple-output (MIMO) and small cells are discussed as classic solutions to the problem, leading to the introduction of fractional frequency reuse and existing ICIC techniques that use FFR. An exploratory analysis is presented in order to demonstrate the effectiveness of ICIC techniques in reducing co-channel interference, as well as to compare different techniques. A statistical study was conducted using one of the techniques from the first analysis in order to identify which of its parameters are relevant to the system performance. Additionally, another study is presented to highlight the impact of high user concentration in the proposed scenario. Because of the dynamic aspect of the system, this work proposes a solution based on machine learning. It consists of changing the ICIC parameters automatically to maintain the best possible signal-to-interference-plus-noise ratio (SINR) in a scenario with hotspots appearing over time. All investigations are based on ns-3 simulator prototyping. The results show that the proposed Q-Learning algorithm increases the average SINR from all users and hotspot users when compared with a scenario without Q-Learning. The SINR from hotspot users is increased by 11.2% in the worst case scenario and by 180% in the best case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kosta, C., B. Hunt, A. U. Quddus und R. Tafazolli. „A Distributed Method of Inter-Cell Interference Coordination (ICIC) Based on Dual Decomposition for Interference-Limited Cellular Networks“. IEEE Communications Letters 17, Nr. 6 (Juni 2013): 1144–47. http://dx.doi.org/10.1109/lcomm.2013.040913.130224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mehta, Mahima, Osianoh Glenn Aliu, Abhay Karandikar und Muhammad Ali Imran. „A SELF-ORGANIZED RESOURCE ALLOCATION USING INTER-CELL INTERFERENCE COORDINATION (ICIC) IN RELAY-ASSISTED CELLULAR NETWORKS“. ICTACT Journal on Communication Technology 02, Nr. 02 (01.06.2011): 300–313. http://dx.doi.org/10.21917/ijct.2011.0043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Inter-cell interference coordination (ICIC)"

1

Yassin, Mohamad. „Inter-cell interference coordination in wireless networks“. Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S106/document.

Der volle Inhalt der Quelle
Annotation:
Grâce aux avancées technologiques dans le domaine des réseaux cellulaires et des équipements mobiles, le nombre d'applications multimédia à haut débit dans les réseaux mobiles ne cesse d'augmenter. On prévoit que le trafic de données dans les réseaux mobiles en 2017 sera 13 fois plus important que celui en 2012. Pour satisfaire aux besoins des équipements mobiles, de nouvelles approches pour la gestion des ressources radio et des puissances de transmission sont requises.Dans le cadre de cette thèse, on s'intéresse à proposer des solutions pour remédier aux problèmes des interférences intercellulaires dans les réseaux mobiles de dernière génération. Nous enquêtons d'une manière exhaustive les différentes techniques de coordination des interférences intercellulaires existantes. Ces techniques sont qualitativement comparées, puis classées selon le taux de coopération requis entre les différentes stations de base, mais aussi selon leurs principes de fonctionnement. Nous abordons également le problème multicellulaire d'allocation des ressources et des puissances de transmission d'une manière centralisée. Nous formulons ce problème d'optimisation centralisé, puis nous le décomposons en deux sous-problèmes indépendants : l'allocation de ressources et l'allocation des puissances de transmission. De plus, une approche distribuée basée sur la théorie des jeux est proposée pour l'allocation des puissances de transmission. Les techniques centralisées de minimisation des interférences intercellulaires offrent la solution optimale au prix d'une grande charge de signalisation. Par contre, les solutions décentralisées réduisent le trafic de signalisation sans garantir l'optimalité de la solution obtenue. Nous proposons ensuite une heuristique de contrôle de puissance qui modifie localement l'allocation des puissances de transmission de manière à éviter le gaspillage d'énergie et pour réduire les interférences ressenties par les utilisateurs des stations de base voisines. Nous proposons également une technique autonome qui gère la distribution des ressources radio entre les différentes zones de chaque cellule. Cette technique répond aux besoins des utilisateurs dans chaque zone en adaptant la distribution des ressources d'une manière dynamique. Nous abordons aussi le compromis entre les techniques de gestion d'interférences intercellulaires centralisées et décentralisées. Nous proposons une approche hybride où l'allocation des ressources radio et des puissances de transmission est faite d'une manière coopérative entre les différentes cellules. Dans un premier lieu, les cellules voisines collaborent afin d'ajuster les puissances de transmission allouées aux ressources radio. Ensuite, la distribution des ressources entre les différentes zones de chaque cellule est modifiée localement, selon les besoins des utilisateurs dans chaque zone
The exponentially increasing demand for mobile broadband communications have led to the dense deployment of cellular networks with aggressive frequency reuse patterns. The future Fifth Generation (5G) networks are expected to overcome capacity and throughput challenges by adopting a multi-tier architecture where several low-power Base Stations (BSs) are deployed within the coverage area of the macro cell. However, Inter-Cell Interference (ICI) caused by the simultaneous usage of the same spectrum in different cells, creates severe problems. ICI reduces system throughput and network capacity, and has a negative impact on cell-edge User Equipment (UE) performance. Therefore, Inter-Cell Interference Coordination (ICIC) techniques are required to mitigate the impact of ICI on system performance. In this thesis, we address the resource and power allocation problem in multiuser Orthogonal Frequency Division Multiple Access (OFDMA) networks such as LTE/LTE-A networks and dense small cell networks. We start by overviewing the state-of-the-art schemes, and provide an exhaustive classification of the existing ICIC approaches. This qualitative classification is followed by a quantitative investigation of several interference mitigation techniques. Then, we formulate a centralized multi-cell joint resource and power allocation problem, and prove that this problem is separable into two independent convex optimization problems. The objective function of the formulated problem consists in maximizing system throughput while guaranteeing throughput fairness between UEs. ICI is taken into account, and resource and power allocation is managed accordingly in a centralized manner. Furthermore, we introduce a decentralized game-theoretical method to solve the power allocation problem without the need to exchange signaling messages between the different cells. We also propose a decentralized heuristic power control algorithm based on the received Channel Quality Indication (CQI) feedbacks. The intuition behind this algorithm is to avoid power wastage for UEs that are close to the serving cell, and reducing ICI for UEs in the neighboring cells. An autonomous ICIC scheme that aims at satisfying throughput demands in each cell zone is also introduced. The obtained results show that this technique improves UE throughput fairness, and it reduces the percentage of unsatisfied UEs without generating additional signaling messages. Lastly, we provide a hybrid ICIC scheme as a compromise between the centralized and the decentralized approaches. For a cluster of adjacent cells, resource and power allocation decisions are made in a collaborative manner. First, the transmission power is adjusted after receiving the necessary information from the neighboring cells. Second, resource allocation between cell zones is locally modified, according to throughput demands in each zone
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Sina. „Inter-cell Interference Coordination in Indoor LTE Systems“. Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91849.

Der volle Inhalt der Quelle
Annotation:
Inter-cell interference coordination in 3GPP Long Term Evolution system received much attention in recent years. However, most of the studies are based on ideal system with regular hexagon-shaped cell. The indoor environment has special characteristics that the building shape and BS locations are irregular; the traffic load has great variation compared to urban and rural area. So, conventional ICIC scheme may not be used in indoor situation directly. In this thesis, ICIC scheme is employed for indoor environment. Based on different quality of backhaul, static and dynamic schemes will be proposed. The performances of proposed schemes and the performance of system without ICIC will be simulated and compared. At last, how much the improvement of the system can acquire after applying ICIC schemes will be analyzed, and the question about whether it is good to apply ICIC scheme in indoor environment will be answered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kosta, Chrysovalantis. „Inter-cell interference coordination in multi-cellular networks“. Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606702.

Der volle Inhalt der Quelle
Annotation:
OFDMA is accepted as the most appropriate air-interface for 4G OFDMA based systems by both researchers in industry and academia. A major problem that arises in OFDMA based systems is inter-cell interference that stems from aggressive frequency reuse and is particularly worse in cell-edge areas. Therefore, Inter-Cell Interference Coordination (ICIC) has been proposed as a promising method to mitigate inter-cell interference (ICI) mainly in the overlapping (cell-edge) areas of a multi-cell cellular network. The main objectives of this thesis are to investigate inter-cell interference in a heterogeneous system comprising of both macro and femto cells, propose and evaluate less complex novel inter-cell interference coordination/avoidance techniques that increase both cell-edge throughput and overall cell throughput. Initially, our scenario focuses on the investigation of co-channel interference in macrocell deployments. In this direction, we propose a static ICIC technique for OFDMA macrocell networks based on cyclic difference sets a branch of combinatorial mathematics to minimize the inter-cell interference. Then, we formulate the dynamic ICIC problem in a linear way in order to minimize the complexity issues with the scalability of the problem. We show that with minimal loss of optimality, this linear problem can be simplified into two smaller problems i.e. the multi-user scheduling (base station) problem and the multi-cell scheduling (network) problem. Simulation results confirm the increased effectiveness of proposed ICIC schemes in both metrics (i.e. cell-edge and total cell throughput) over a number of state-of-the-art (static and dynamic) interference avoidance schemes. After, the ICIC technique is optimized to minimize the total transmit power by employing inter-cell and intra-cell power control without compromising the cell-edge throughput. Here, we formulate the multi-objective problem as a multi-dimensional knapsack problem. Our simulation results of the proposed scheme show its increased energy efficiency and user fairness compared with the state-of-the-art energy efficient schemes. Finally, the complexity of the ICIC problem and the need of a centralised controller are further reduced in order to benefit small-cell deployments. Here, it is shown that the complexity of the ICIC version can be further reduced by employing a dual decomposition method from optimization theory. Extensive simulation results show a significant improvement of the proposed scheme compared with some distributed reference schemes in terms of cell-edge and total cell throughput and thus it is a promising candidate for next generation mobile systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vincenzi, Lorenzo. „Inter-cell Interference Coordination algorithms for 5G networks“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25332/.

Der volle Inhalt der Quelle
Annotation:
L'elaborato affronta il tema dell'Inter-Cell Interference Coordination (ICIC) applicato ad un sistema 5G. Il sistema viene modellato mediante il software di simulazione ns-3. L'approccio utilizzato è quello di unire gli algoritmi di Frequency Reuse, che rappresentano un approccio statico di coordinamento dell'interferenza inter-cella, e il beamforming, caratteristica fondamentale introdotta dallo standard 5G, allo scopo di ottimizzare l'allocazione di risorse verso tutti gli utenti che il sistema cellulare copre. Lo studio effettuato affronta in maniera sistematica le specifiche dello standard 5G, con una particolare attenzione al modo in cui questo viene implementato all'interno del software di simulazione, con lo scopo di attuare modifiche in maniera consapevole delle caratteristiche che lo standard presenta. Infatti, proprio perché lo scenario di partenza non comprende l'applicazione di algoritmi di ICIC, è stato necessario modificare l'architettura iniziale della network già impostata all'interno di ns-3 e realizzare un interfacciamento con gli algoritmi di Frequency Reuse, andando a modificare il modo in cui la Base Station alloca le risorse. Inoltre, è stato necessario introdurre tutta la componente di segnali che utenti e Base Station si scambiano per fornirsi informazioni utili al coordinamento dell'interferenza inter-cella. In particolare, mediante il software viene modellato uno scenario di partenza, rappresentato da un generico stadio, e vengono valutate le performance del sistema in termini di pacchetti ricevuti sui totali pacchetti trasmessi. Con l'applicazione di un coordinamento dell'interferenza tra le celle si raggiungono risultati significativi, che portano ad un incremento delle performance del sistema. Il risultato finale mostra come l'utilizzo di algoritmi di ICIC migliori le performance del sistema grazie alla riduzione dell'interferenza, che permette un'allocazione di maggiori risorse con una perdita di pacchetti significativamente ridotta.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Afolalu, Oladele Felix. „Inter-cell interference coordination in 5G ultra-dense networks“. Doctoral thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/33607.

Der volle Inhalt der Quelle
Annotation:
The exponentially increasing demand for mobile broadband communications has led to the dense deployment of cellular networks with aggressive frequency reuse patterns. The future Fifth Generation (5G) networks are expected to overcome capacity and throughput challenges by adopting a multi-tier architecture where several low-power Base Stations (BSs) are deployed within the coverage area of the macro cell. Hence, Inter-Cell Interference (ICI) caused by the simultaneous usage of the same spectrum in different cells creates severe problems. ICI reduces system throughput and network capacity, and has a negative impact on cell-edge users and overall system performance. Therefore, effective interference coordination techniques are required, especially, for user-to-cell association and resource allocation to mitigate severe impact of ICI on system performance in 5G heterogeneous networks (HetNets). This is to improve Quality of Service (QoS) and maximize system throughput arising from the deployment of small cell overlay on macro BSs in heterogeneous cellular networks, which creates traffic load imbalance due to varying transmit power of different BSs in the downlink. In this research, a cell association scheme based on Cell Range Expansion (CRE), integrated with power control techniques is proposed. Simulation results are presented to show the ability of this technique to protect offloaded users from severe ICI and maximize throughput while achieving desirable QoS and load balancing for users of different tiers. With the advancement of information and computer technology, the envisioned 5G wireless communication is expected to encompass an unprecedented heterogeneous and ultra-dense communication environment. Vehicular communications play a vital role in 5G wireless network and have been widely studied recently due to its great potential to ensure reliability and support intelligent transportation and various safety applications. This research therefore exploits the tractability of stochastic geometry to analyze the coverage of urban vehicular networks, by deriving a closed-form expression to maximize the ergodic capacity of cellular users (CUEs) and mitigate interference, taking into consideration the QoS requirements of both vehicle-to-vehicle (V2V) and vehicleto-infrastructure (V2I) links. Consequently, the latency and reliability requirements of V2V/V2I links are formulated as optimization constraints, involving joint power allocation and spectrum sharing (PASS), taking into account the slow varying and large scale channel state information (CSI) measurements. Due to non-convex nature of the problem, the optimization is transformed into sub-optimal convex equivalence, while a low complexity Algorithm that yields optimal resource allocation is then designed to solve it. Simulation results are used to show enhanced performance in our approach compared to related works. Finally, the upsurge in the number of connected devices, such as smart cars, to the envisioned 5G technology is expected to pose high capacity and data rate demands on the network. The conventional access techniques (i.e., CDMA, TDMA and OFDMA) may not meet stringent requirements, such as ultra-low latency, high reliability, improved spectral efficiency and massive device connectivity. This work further investigates non-orthogonal multiple access (NOMA) technique as promising solution to improve spectral efficiency and reduce interference in 5G Ultra Dense Network (UDN). The NOMA scheme is combined with two promising capacity and bandwidth enhancement techniques - massive multiple input and multiple output (MIMO) and carrier aggregation (CA), for overall network performance. In particular, for the proposed novel NOMA-CA approach, we justify the importance of maintaining green communication as a key requirement for 5G with Energy Efficiency (EE) analysis. Firstly, a proportional fairness scheduler is used to perform resource allocation and maintain fairness among users based on their channel condition. Secondly, an optimization problem to maximize the EE weighted-sum under joint power and bandwidth allocation on each aggregated component carrier (CC) is formulated. Conventionally, the formulated optimization is transformed from non-convex to convex problem. An iteratively adaptive Algorithm is then developed to find optimal solution for the problem. Simulation results show better improvement in EE and sum rate compared to the traditional OMA scheme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ghamnia, Imène. „Rate balancing methods for multi-user MIMO systems with perfect or partial CSIT“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS234.pdf.

Der volle Inhalt der Quelle
Annotation:
Avec la progression de l'utilisation des smartphones, les modèles de systèmes ont rapidement évolué pour répondre aux besoins croissants en terme de capacité dans les réseaux sans fil. En effet, les progrès technologiques ont été considérables, depuis les communications point à point mono-utilisateur et mono-antenne jusqu'aux réseaux cellulaires multi-cellules et multi-antennes. Depuis la 3G, la technologie MIMO (multiple-input multiple-output) pour les communications sans fil est désormais intégrée aux normes de la large bande sans fil. L'ajout de plusieurs antennes, tant du côté de l'émetteur que du côté du récepteur, permet le multiplexage spatial (c'est-à-dire l'envoi simultané de plusieurs flux de données), qui permet d'augmenter les débits de données, et l'exploitation de la diversité spatiale, améliorant considérablement la qualité des liaisons. MIMO Multi-Utilisateurs (MU) a été un sujet bien étudié dans le domaine des communications sans fil en raison du grand potentiel qu'il offre pour améliorer le débit du système. Par conséquent, différents critères de conception pour les communications MIMO MU ont été étudiés dans la littérature. La plupart des conceptions de liaisons descendantes prennent en compte les problèmes d'optimisation de la capacité totale de tous les utilisateurs. D'autre part, la principale limitation des communications sans fil modernes est l'interférence (intracellulaire et intercellulaire) due à la réutilisation des fréquences. Ainsi, dans un scénario MIMO MU, lors de l'optimisation de l'efficacité globale, l'allocation de puissance se concentre sur les bons canaux, c'est-à-dire que les utilisateurs soumis à une forte interférence (e.g., les utilisateurs en bordure de cellule) sont délaissés. Il en résulte une répartition inéquitable de puissance entre les utilisateurs. Pour pallier ce problème, différentes notions d'équité sont introduites, comme l'équité max-min, l'équité pondérée ou l'équité proportionnelle. Dans cette thèse, nous nous concentrons sur l'équité max-min pondérée. En particulier, nous étudions le problème de l'équilibrage du débit pondéré par utilisateur dans un système MIMO multi-cellules MU. Nous abordons ce dernier dans le cadre d'une formulation conjointe du problème de beamforming et d'allocation de puissance, visant à satisfaire l'exigence d'équité. Dans la première partie, nous considérons la connaissance parfaite du canal pour résoudre le problème. Dans ce cas, nous maximisons le débit minimum pondéré via i) la dualité liaison montante/descendante et ii) la dualité Lagrangienne. Dans la deuxième partie, nous considérons la connaissance partielle du canal. Nous optimisons le problème d'équilibrage de débit ergodique via i) l'erreur quadratique moyenne pondérée (EQM) en exploitant la relation débit - EQM, et ii) deux approximations du débit estimé comme le débit de signal et de puissance d'interférence estimés (ESIP) au niveau du flux et du signal reçu. Par ailleurs, nous proposons une stratégie d'efficacité énergétique au moyen des approches d'équilibrage des débits proposées
With the rise in smartphone usage, the system models have rapidly evolved to meet ever-growing needs for capacity in wireless networks. Indeed, there have been large advances in technology, from single-user single-antenna point-to-point communications to multi-cell multi-antenna cellular networks. In fact, multiple-input multiple-output (MIMO) technology for wireless communications is now incorporated into wireless broadband standards since 3G. Adding multiple antennas at both the transmitter and the receiver sides enables spatial multiplexing (i.e. sending multiple data streams simultaneously), which allows to increase data rates, and spatial diversity exploitation, which allows to greatly improve link quality. The multi-user MIMO downlink (so-called Broadcast Channel (BC)) has been a well investigated subject in wireless communications because of the high potential it offers in improving the system throughput. Therefore, different design criteria for multi-user MIMO communication have been investigated in the literature. Most of the downlink designs consider optimization problems w.r.t. the sum-capacity of all users. On the other hand, the major bottleneck of modern wireless communication is the interference (intracell and intercell) due to frequency reuse. Thus, in a multi-user MIMO scenario, when optimizing the overall efficiency, the power allocation is focused on the good channels, i.e., users that are subject to strong interference (e.g. cell-edge users) are neglected. The result is an unfair distribution of rate among users. In order to avoid this effect, different fairness notions have been introduced, like max-min fairness, weighted fairness, or proportional fairness. In this thesis, we focus on the weighted max-min fairness. In particular, we study the (weighted) user rate balancing problem in a multi-cell multi-user MIMO system. We address this problem by joint beamforming and power allocation optimization, aiming to satisfy the fairness requirements. In the first part, we consider perfect knowledge of the channel to solve the problem. Therein, we maximize the minimum (weighted) rate via i) weighted user Mean Square Error (MSE) uplink/downlink duality and ii) Lagrangian duality. In the second part, we consider partial knowledge of the channel. We optimize the ergodic rate balancing problem via i) weighted expected MSE by exploiting the rate – MSE relation, and ii) two approximations of the expected rate as the Expected Signal and Interference Power (ESIP) rate at the stream level and the received signal level. Furthermore, we study the transmit power minimization problem with fixed user-rate targets and provide a strategy exploiting the proposed rate balancing approaches
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Plass, Simon. „Cellular MC-CDMA downlink systems coordination, cancellation, and use of inter-cell interference“. Düsseldorf VDI-Verl, 2008. http://d-nb.info/990760375/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Trabelsi, Nessrine. „A Game Theoretic Framework for User Association & Inter-cell Interference Management in LTE Cellular Networks“. Thesis, Avignon, 2016. http://www.theses.fr/2016AVIG0215/document.

Der volle Inhalt der Quelle
Annotation:
Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé
Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Adouane, Amine Mohamed. „Dynamic management of spectral resources in LTE networks“. Thesis, Versailles-St Quentin en Yvelines, 2015. http://www.theses.fr/2015VERS007V/document.

Der volle Inhalt der Quelle
Annotation:
La croissance exponentielle du nombre de dispositifs communicants et des services sans fils émergents fixe des objectifs toujours plus haut pour répondre à la demande de capacité sans cesse croissante des utilisateurs. Cela pose des défis constants pour atteindre les objectifs envisagés. La réutilisation spectrale élevée (High efficiency spectral reuse) a été adopté, cependant, elle conduit à des interférences accrues sur le réseau, ce qui dégrade les performances. L'OFDM (Orthogonal Frequency Division Multiplexing) est utilisé comme solution dans les réseaux de 4 G. Grâce à son orthogonalité, l'OFDM élimine l'interférence intra-cellulaire, mais l'interférence inter-cellule reste importante. Plusieurs méthodes connues sous le nom d'Inter-Cell interférences coordination (ICIC) ont été proposées pour les diminuer. L'ICIC permet la gestion des ressources radio coordonnée entre plusieurs cellules appelées ENodeB. Ces eNodeB peuvent partager les informations nécessaires grâce à l'interface X2 qui les relient, ces informations sont transmises par des messages LTE normalisés. Lorsque les ENodeBs sélectionnent égoïstement les ressources, la théorie de jeux non-coopératifs est largement appliquée pour trouver un juste équilibre. Dans cette thèse, nous mettons l'accent sur l'ICIC pour la liaison descendante d'un système OFDMA cellulaire dans le contexte du projet SOAPS (Spectrum opportuniste accès à la Sécurité publique). Ce projet a pour but l'amélioration de la planification des ressources de fréquences pour fournir des services à large bande dans les systèmes PMR (radiocommunications mobiles privées) en utilisant les technologies LTE. Nous adressons le problème d'ICIC en proposant quatre solutions différentes sous forme d'algorithmes entièrement décentralisés, ces algorithmes se basent sur la théorie des jeux non-coopératifs avec des équilibres de Nash purs des jeux considérés
The exponential growth in the number of communications devices has set out new ambitious targets to meet the ever-increasing demand for user capacity in emerging wireless systems. However, the inherent impairments of communication channels in cellular systems pose constant challenges to meet the envisioned targets. High spectral reuse efficiency was adopted as a solution to higher data rates. Despite its benefits, high spectral reuse leads to increased interference over the network, which degrades performances of mobile users with bad channel quality. To face this added interfence, OFDM (Orthogonal Frequency Division Multiplexing) is used for the new 4th generation network. Thanks to its orthogonality OFDM eliminates the intra-cellular interference, but when the same resources are used in two adjacents cells, the inter-cell interference becomes severe. To get rid of the latter, several methods for Inter-Cell Interference Coordination (ICIC) have been proposed. ICIC allows coordinated radio resources management between multiple cells. The eNodeBs can share resource usage information and interference levels over the X2 interface through LTE-normalized messages. Non-cooperative game theory was largely applied were eNodeBs selfishly selects resource blocks (RBs) in order to minimize interference. In this thesis, we stress on ICIC for the downlink of a cellular OFDMA system in the context of the SOAPS (Spectrum Opportunistic Access in Public Safety) project. This project focuses on the improvement of frequency resource scheduling for Broadband Services provision by PMR (Private Mobile Radio) systems using LTE technologies. We addressed this problem with four different solutions based on Non-cooperative game theory, three algorithms are devoted to RB selection in order to manage the interference, while the last one is a power control scheme with power economy and enhanced system performances
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kuo, Yen-Wei, und 郭彥蔚. „Fuzzy-Based Inter-Cell Interference Coordination in LTE/LTE-A Heterogeneous Networks“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/wvy35f.

Der volle Inhalt der Quelle
Annotation:
博士
國立中央大學
資訊工程學系
104
The Long Term Evolution (LTE) Heterogeneous Networks (HetNet) consists of several different type of base station for providing different coverage and capacity and increasing network capacity continuously. In LTE HetNet, the mass deployment and frequently on/off of small cells, such as femtocells, causes severe inter-cell interference problem due to the nature of user deployment without X2 interface, especially in Closed Subscriber Group (CSG) mode. The concept of Inter-Cell Interference Coordination proposed by The 3rd Generation Partnership Project (3GPP) can be achieved by using power restriction or resource restriction methods. In this article, we proposed two distributed fuzzy-based Inter-Cell Interference Coordination (ICIC) algorithms based on the concept of the power restriction and resource restriction. The low complexity and high flexibility of the proposed algorithms is benefited from the fuzzy Multi-Attributes Decision Making (MADM). Fuzzy theory can provide means to make approximate decisions with low complexity and high flexibility, especially in current multi-parameters communication systems, such as LTE system, in which the diversity of network metrics can help fuzzy system to make better decision. The proposed adaptive power restriction algorithm provides an appropriate serving range for femtocells, determining center zone and separating UEs into cell center and cell edge for frequency-reused algorithms, such as Soft Frequency Reuse (SFR) and Fractional Frequency Reuse (FFR), without complicated negotiation among cells. The proposed adaptive radio restriction algorithm weighs the trade-off between coverage and capacity by leveraging three system metrics to make an appropriate scheduling decision to avoid the conflict in radio resource used among cells. In particular, there are no fixed fuzzy logic rules and shaped fuzzy membership model compared to conventional fuzzy-based algorithms. The simulation results show that proposed algorithms provide about 49 % data rate improvement for femtocell and about 18 % data rate improvement for macrocell compared to current link adaptation algorithm. In addition, it can achieve up to 56 % data rate and 89 % radio resource efficiency of the up bound case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Inter-cell interference coordination (ICIC)"

1

Katiran, Norshidah, Norsheila Fisal, Sharifah Kamilah Syed Yusof, Siti Marwangi Mohamad Maharum, Aimi Syamimi Ab Ghafar und Faiz Asraf Saparudin. „Inter-cell Interference Mitigation and Coordination in CoMP Systems“. In Informatics Engineering and Information Science, 654–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25462-8_58.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Feng, Lu, Gang Su, Niyonsaba Alexandre und Li Tan. „Inter-cell Interference Coordination in LTE Self Organizing Network“. In Advances in Intelligent Systems and Computing, 69–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01057-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Yen-Wen, und Kang-Hao Lo. „Design of Decentralized Inter-Cell Interference Coordination Scheme in LTE Downlink System“. In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 113–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33810-1_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Guillet, Julien, und Loïc Brunel. „Inter-cell Interference Coordination for Femto Cells Embedded in a Moving Vehicle“. In Lecture Notes in Computer Science, 86–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38921-9_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

González G., David, Mario García-Lozano, Silvia Ruiz und Joan Olmos. „Static Inter-Cell Interference Coordination Techniques for LTE Networks: A Fair Performance Assessment“. In Multiple Access Communications, 211–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15428-7_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

González G, David, Mario García-Lozano, Silvia Ruiz und Joan Olmos. „On the Performance of Static Inter-cell Interference Coordination in Realistic Cellular Layouts“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 163–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21444-8_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lai, Wei-Sheng, Tsung-Hui Chang, Kuan-Hsuan Yeh und Ta-Sung Lee. „Dynamic Enhanced Inter-cell Interference Coordination Strategy with Quality of Service Guarantees for Heterogeneous Networks“. In Backhauling/Fronthauling for Future Wireless Systems, 119–42. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119170402.ch6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gupta, Vaibhav Kumar, und Gaurav S. Kasbekar. „Achieving Arbitrary Throughput–Fairness Trade-offs in the Inter-cell Interference Coordination with Fixed Transmit Power Problem“. In Network Games, Control, and Optimization, 17–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10880-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ahmed, Furqan, Alexis A. Dowhuszko und Olav Tirkkonen. „Network Optimization Methods for Self-Organization of Future Cellular Networks“. In Advances in Wireless Technologies and Telecommunication, 35–65. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0239-5.ch002.

Der volle Inhalt der Quelle
Annotation:
This chapter discusses network optimization methods for enabling self-organization in current cellular networks such as Long Term Evolution (LTE)/LTE-Advanced (LTE-A), and the upcoming 5G networks. Discrete and continuous optimization models are discussed for developing distributed algorithms for self-configuration and self-optimization. The focus is on Self-Organized Networking (SON) problems, which are relevant to small cell networks. Examples include Physical Cell-ID (PCI) assignment, Primary Component Carrier (PCC) selection, Inter-Cell Interference Coordination (ICIC), and network synchronization. A conflict-graph model is considered for PCI assignment and PCC selection problems, which paves the way for different graph coloring algorithms with self-organizing properties. Algorithms for self-organized ICIC and network synchronization are also developed in a principled manner, through a network utility maximization framework. This systematic approach leads to a variety of algorithms which adhere to self-organization principles, but have varying requirements in terms of inter-cell coordination and computation complexity. Fully distributed self-organizing algorithms do not involve any inter-cell dedicated message-passing, and thus are faster and more scalable than the ones that are distributed but require local coordination via exchange of messages between cells. However, local coordination enables higher network utility and better convergence properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Behjati, Mohammadreza, und John Cosmas. „Self-Organizing Network Solutions“. In Advances in Wireless Technologies and Telecommunication, 241–53. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2342-0.ch011.

Der volle Inhalt der Quelle
Annotation:
Quality of service (QoS) and network capacity are being insisted as the two dominant factors for the utmost network satisfaction within any mobile network contracts. On the other hand, the heterogeneous network (HetNets), which are constructed based on sub-network layers' cooperation between macrocell and shorter-range applications like micro, femto and relay nodes, are also introduced as an open door to the recent researches towards the desired network satisfaction for the recently upgraded networks like LTE-Advanced (LTE-A). Nevertheless, since any network cooperation is expected to include a number of challenges; this cooperation is not excluded of dealing with degrading effects, such as interference, among the sub-network elements. This chapter presents a detailed discussion in self-organizing network (SON) methodology, as a novel solution to deal with network challenges, e.g. inter-cell interference coordination (ICIC), mobility, power control, etc. to improve the network quality and capacity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Inter-cell interference coordination (ICIC)"

1

Kosta, Chrysovalantis, Bernard Hunt, Atta U. Quddus und Rahim Tafazolli. „Distributed Energy-Efficient Inter-Cell Interference Coordination (ICIC) in Multi-Cell HetNets“. In 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). IEEE, 2013. http://dx.doi.org/10.1109/vtcspring.2013.6692511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Guvenc, Ismail, Moo-Ryong Jeong, Ibrahim Demirdogen, Balkan Kecicioglu und Fujio Watanabe. „Range Expansion and Inter-Cell Interference Coordination (ICIC) for Picocell Networks“. In 2011 IEEE Vehicular Technology Conference (VTC Fall). IEEE, 2011. http://dx.doi.org/10.1109/vetecf.2011.6092863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kosta, Chrysovalantis, Bernard Hunt, Atta U. Quddus und Rahim Tafazolli. „A Low-Complexity Distributed Inter-Cell Interference Coordination (ICIC) Scheme for Emerging Multi-Cell HetNets“. In 2012 IEEE Vehicular Technology Conference (VTC Fall). IEEE, 2012. http://dx.doi.org/10.1109/vtcfall.2012.6399323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fraimis, Ioannis G., Vasileios D. Papoutsis und Stavros A. Kotsopoulos. „A Decentralized Subchannel Allocation Scheme with Inter-Cell Interference Coordination (ICIC) for Multi-Cell OFDMA Systems“. In GLOBECOM 2010 - 2010 IEEE Global Communications Conference. IEEE, 2010. http://dx.doi.org/10.1109/glocom.2010.5683970.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Coucheney, Pierre, Kinda Khawam und Johanne Cohen. „Multi-Armed Bandit for distributed Inter-Cell Interference Coordination“. In 2015 IEEE International Conference on Signal Processing for Communications (ICC). IEEE, 2015. http://dx.doi.org/10.1109/icc.2015.7248837.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hui Bao und Jiajia Liu. „A novel Inter-Cell Interference Coordination scheme for OFDMA system“. In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icicisys.2010.5658367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zaidi, Syed Ali Raza, Desmond C. McLernon, Mounir Ghogho und Muhammad Ali Imran. „Cloud empowered Cognitive Inter-cell Interference Coordination for small cellular networks“. In 2015 ICC - 2015 IEEE International Conference on Communications Workshops (ICC). IEEE, 2015. http://dx.doi.org/10.1109/iccw.2015.7247511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Ranqiang, Na Deng und Haichao Wei. „Inter-Cell Interference Coordination for AirComp Federated Learning in Cellular Networks“. In 2023 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2023. http://dx.doi.org/10.1109/iccc57788.2023.10233371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mahmood, Nurul Huda, Klaus Ingemann Pedersen und Preben Mogensen. „Interference aware inter-cell rank coordination for 5G wide area networks“. In 2017 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2017. http://dx.doi.org/10.1109/iccw.2017.7962730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lembo, Sergio, Petteri Lunden, Olav Tirkkonen und Kimmo Valkealahti. „Optimal muting ratio for Enhanced Inter-Cell Interference Coordination (eICIC) in HetNets“. In 2013 ICC - 2013 IEEE International Conference on Communication Workshop (ICC). IEEE, 2013. http://dx.doi.org/10.1109/iccw.2013.6649409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie