Zeitschriftenartikel zum Thema „Intelligence artificielle (ML/DL)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Intelligence artificielle (ML/DL)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Brouchet, Edouard, François de Brondeau, Marie-José Boileau und Masrour Makaremi. „Apport de l’intelligence artificielle dans la prévision de croissance mandibulaire : revue systématique de la littérature“. Revue d'Orthopédie Dento-Faciale 58, Nr. 2 (Juni 2024): 185–209. http://dx.doi.org/10.1051/odf/2024021.
Der volle Inhalt der QuelleAFTAB, Ifra, Mohammad DOWAJY, Kristof KAPITANY und Tamas LOVAS. „Artificial Intelligence (AI) – based strategies for point cloud data and digital twins“. Nova Geodesia 3, Nr. 3 (19.08.2023): 138. http://dx.doi.org/10.55779/ng33138.
Der volle Inhalt der QuelleChoudhary, Laxmi, und Jitendra Singh Choudhary. „Deep Learning Meets Machine Learning: A Synergistic Approach towards Artificial Intelligence“. Journal of Scientific Research and Reports 30, Nr. 11 (16.11.2024): 865–75. http://dx.doi.org/10.9734/jsrr/2024/v30i112614.
Der volle Inhalt der QuelleZhang, Shengzhe. „Artificial Intelligence and Applications in Structural and Material Engineering“. Highlights in Science, Engineering and Technology 75 (28.12.2023): 240–45. http://dx.doi.org/10.54097/9qknfc57.
Der volle Inhalt der QuelleIadanza, Ernesto, Rachele Fabbri, Džana Bašić-ČiČak, Amedeo Amedei und Jasminka Hasic Telalovic. „Gut microbiota and artificial intelligence approaches: A scoping review“. Health and Technology 10, Nr. 6 (26.10.2020): 1343–58. http://dx.doi.org/10.1007/s12553-020-00486-7.
Der volle Inhalt der QuelleGokcekuyu, Yasemin, Fatih Ekinci, Mehmet Serdar Guzel, Koray Acici, Sahin Aydin und Tunc Asuroglu. „Artificial Intelligence in Biomaterials: A Comprehensive Review“. Applied Sciences 14, Nr. 15 (28.07.2024): 6590. http://dx.doi.org/10.3390/app14156590.
Der volle Inhalt der QuelleGayatri, T., G. Srinivasu, D. M. K. Chaitanya und V. K. Sharma. „A Review on Optimization Techniques of Antennas Using AI and ML / DL Algorithms“. International Journal of Advances in Microwave Technology 07, Nr. 02 (2022): 288–95. http://dx.doi.org/10.32452/ijamt.2022.288295.
Der volle Inhalt der QuelleDrikakis, Dimitris, und Filippos Sofos. „Can Artificial Intelligence Accelerate Fluid Mechanics Research?“ Fluids 8, Nr. 7 (19.07.2023): 212. http://dx.doi.org/10.3390/fluids8070212.
Der volle Inhalt der QuelleAn, Ruopeng, Jing Shen und Yunyu Xiao. „Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies“. Journal of Medical Internet Research 24, Nr. 12 (07.12.2022): e40589. http://dx.doi.org/10.2196/40589.
Der volle Inhalt der QuelleAli, Zulfiqar, Asif Muhammad, Nangkyeong Lee, Muhammad Waqar und Seung Won Lee. „Artificial Intelligence for Sustainable Agriculture: A Comprehensive Review of AI-Driven Technologies in Crop Production“. Sustainability 17, Nr. 5 (05.03.2025): 2281. https://doi.org/10.3390/su17052281.
Der volle Inhalt der QuellePelayes, David Eduardo, Jose A. Mendoza und Anibal Martin Folgar. „Artificial intelligence use in diabetes“. Latin American Journal of Ophthalmology 5 (10.12.2022): 6. http://dx.doi.org/10.25259/lajo_4_2022.
Der volle Inhalt der QuelleKumar, Sanjeet, Urmila Pilania und Neha Nandal. „A Systematic Study of Artificial Intelligence-Based Methods for Detecting Brain Tumors“. Informatics and Automation 22, Nr. 3 (22.05.2023): 541–75. http://dx.doi.org/10.15622/ia.22.3.3.
Der volle Inhalt der QuelleWang, Zichang. „Enhancing Cancer Prediction Accuracy Through Real-Time Monitoring and Artificial Intelligence Analysis for Patients“. Highlights in Science, Engineering and Technology 85 (13.03.2024): 309–15. http://dx.doi.org/10.54097/rw17nn71.
Der volle Inhalt der QuelleRazzaq, Kamran, und Mahmood Shah. „Machine Learning and Deep Learning Paradigms: From Techniques to Practical Applications and Research Frontiers“. Computers 14, Nr. 3 (06.03.2025): 93. https://doi.org/10.3390/computers14030093.
Der volle Inhalt der QuelleAnnapoorani, S. „AN IN-DEPTH ANALYSIS OF ARTIFICIAL INTELLIGENCE APPROACHES FOR RAINFALL PREDICTION“. international journal of advanced research in computer science 15, Nr. 2 (20.04.2024): 48–58. http://dx.doi.org/10.26483/ijarcs.v15i2.7061.
Der volle Inhalt der QuelleUmesh Kumar. „Scientific Analysis of Various Computational Intelligence Methods used for Weather Forecasting“. Journal of Information Systems Engineering and Management 10, Nr. 9s (09.02.2025): 482–92. https://doi.org/10.52783/jisem.v10i9s.1246.
Der volle Inhalt der QuelleMahjabeen, Farhana. „Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review“. Formosa Journal of Science and Technology 3, Nr. 10 (26.10.2024): 2397–406. http://dx.doi.org/10.55927/fjst.v3i10.11552.
Der volle Inhalt der QuelleJain, Rituraj, Sitesh Kumar Singh, Damodharan Palaniappan, Kumar Parmar und Premavathi T. „Data-Driven Civil Engineering: Applications of Artificial Intelligence, Machine Learning, and Deep Learning“. Turkish Journal of Engineering 9, Nr. 2 (20.01.2025): 354–77. https://doi.org/10.31127/tuje.1581564.
Der volle Inhalt der QuelleKhan, Irfan Ullah, Nida Aslam, Malak Aljabri, Sumayh S. Aljameel, Mariam Moataz Aly Kamaleldin, Fatima M. Alshamrani und Sara Mhd Bachar Chrouf. „Computational Intelligence-Based Model for Mortality Rate Prediction in COVID-19 Patients“. International Journal of Environmental Research and Public Health 18, Nr. 12 (14.06.2021): 6429. http://dx.doi.org/10.3390/ijerph18126429.
Der volle Inhalt der QuelleRodríguez-Merchán, E. Carlos. „The current role of the virtual elements of artificial intelligence in total knee arthroplasty“. EFORT Open Reviews 7, Nr. 7 (01.07.2022): 491–97. http://dx.doi.org/10.1530/eor-21-0107.
Der volle Inhalt der QuelleR, Kusuma, und R. Rajkumar. „Plant leaf disease detection and classification using artificial intelligence techniques: a review“. Indonesian Journal of Electrical Engineering and Computer Science 38, Nr. 2 (01.05.2025): 1308. https://doi.org/10.11591/ijeecs.v38.i2.pp1308-1323.
Der volle Inhalt der QuelleMahjabeen, Farhana. „Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review“. Formosa Journal of Applied Sciences 3, Nr. 10 (26.10.2024): 4175–84. http://dx.doi.org/10.55927/fjas.v3i10.11536.
Der volle Inhalt der QuelleR. Arthy, Et al. „Harvesting Intelligence: A Comprehensive Study on Transforming Aquaponic Agriculture with AI and IoT“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 8s (18.08.2023): 782–95. http://dx.doi.org/10.17762/ijritcc.v11i8s.9473.
Der volle Inhalt der QuelleChoo, Min Soo, Ho Young Ryu und Sangchul Lee. „Development of an Automatic Interpretation Algorithm for Uroflowmetry Results: Application of Artificial Intelligence“. International Neurourology Journal 26, Nr. 1 (31.03.2022): 69–77. http://dx.doi.org/10.5213/inj.2244052.026.
Der volle Inhalt der QuelleChandu, D. Vaidya, Botre Mayuri, Rokde Yash, Kumbhalkar Sagar, Linge Soham, Pitale Soham und Bawne Shreyash. „Unveiling sentiment analysis: A comparative study of LSTM and Logistic regression models with XAI insights“. i-manager's Journal on Computer Science 11, Nr. 3 (2023): 36. http://dx.doi.org/10.26634/jcom.11.3.20471.
Der volle Inhalt der QuelleEl-den, B. M. El, und Marwa M. Eid. „Watermarking Models and Artificial Intelligence“. Journal of Artificial Intelligence and Metaheuristics 1, Nr. 2 (2022): 24–30. http://dx.doi.org/10.54216/jaim.010203.
Der volle Inhalt der QuelleKuhn, Stefan, Rômulo Pereira de Jesus und Ricardo Moreira Borges. „Nuclear Magnetic Resonance and Artificial Intelligence“. Encyclopedia 4, Nr. 4 (18.10.2024): 1568–80. http://dx.doi.org/10.3390/encyclopedia4040102.
Der volle Inhalt der QuelleShirinova, Simuzar. „Leveraging Artificial Intelligence in Linguistics: Innovations in Language Acquisition and Analysis“. EuroGlobal Journal of Linguistics and Language Education 2, Nr. 1 (11.02.2025): 50–57. https://doi.org/10.69760/egjlle.250006.
Der volle Inhalt der QuelleAlafif, Tarik, Abdul Muneeim Tehame, Saleh Bajaba, Ahmed Barnawi und Saad Zia. „Machine and Deep Learning towards COVID-19 Diagnosis and Treatment: Survey, Challenges, and Future Directions“. International Journal of Environmental Research and Public Health 18, Nr. 3 (27.01.2021): 1117. http://dx.doi.org/10.3390/ijerph18031117.
Der volle Inhalt der QuelleSarkar, Chayna, Biswadeep Das, Vikram Singh Rawat, Julie Birdie Wahlang, Arvind Nongpiur, Iadarilang Tiewsoh, Nari M. Lyngdoh, Debasmita Das, Manjunath Bidarolli und Hannah Theresa Sony. „Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development“. International Journal of Molecular Sciences 24, Nr. 3 (19.01.2023): 2026. http://dx.doi.org/10.3390/ijms24032026.
Der volle Inhalt der QuelleIslam, Mahmudul, Masud Rana Rashel, Md Tofael Ahmed, A. K. M. Kamrul Islam und Mouhaydine Tlemçani. „Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review“. Energies 16, Nr. 21 (03.11.2023): 7417. http://dx.doi.org/10.3390/en16217417.
Der volle Inhalt der QuelleAmarasingam, Narmilan, Fernando Vanegas, Melissa Hele, Angus Warfield und Felipe Gonzalez. „Integrating Artificial Intelligence and UAV-Acquired Multispectral Imagery for the Mapping of Invasive Plant Species in Complex Natural Environments“. Remote Sensing 16, Nr. 9 (29.04.2024): 1582. http://dx.doi.org/10.3390/rs16091582.
Der volle Inhalt der QuelleAlkhurayyif, Yazeed, und Abdul Rahaman Wahab Sait. „A Review of Artificial Intelligence-Based Dyslexia Detection Techniques“. Diagnostics 14, Nr. 21 (23.10.2024): 2362. http://dx.doi.org/10.3390/diagnostics14212362.
Der volle Inhalt der QuelleZhang, Zhao, Guangfei Li, Yong Xu und Xiaoying Tang. „Application of Artificial Intelligence in the MRI Classification Task of Human Brain Neurological and Psychiatric Diseases: A Scoping Review“. Diagnostics 11, Nr. 8 (03.08.2021): 1402. http://dx.doi.org/10.3390/diagnostics11081402.
Der volle Inhalt der QuelleHagos, Desta Haileselassie, Theofilos Kakantousis, Sina Sheikholeslami, Tianze Wang, Vladimir Vlassov, Amir Hossein Payberah, Moritz Meister, Robin Andersson und Jim Dowling. „Scalable Artificial Intelligence for Earth Observation Data Using Hopsworks“. Remote Sensing 14, Nr. 8 (14.04.2022): 1889. http://dx.doi.org/10.3390/rs14081889.
Der volle Inhalt der QuelleFaisal Ghazi Bishaw. „Review Artificial Intelligence Applications in Renewable Energy Systems Integration“. Journal of Electrical Systems 20, Nr. 3 (30.04.2024): 566–82. http://dx.doi.org/10.52783/jes.2983.
Der volle Inhalt der QuelleBhattiprolu, Sreenivas. „From Machine Learning to Deep Learning: Revolutionizing Microscopy Image Analysis“. Microscopy Today 32, Nr. 6 (November 2024): 13–19. https://doi.org/10.1093/mictod/qaae082.
Der volle Inhalt der QuelleBaashar, Yahia, Gamal Alkawsi, Hitham Alhussian, Luiz Fernando Capretz, Ayed Alwadain, Ammar Ahmed Alkahtani und Malek Almomani. „Effectiveness of Artificial Intelligence Models for Cardiovascular Disease Prediction: Network Meta-Analysis“. Computational Intelligence and Neuroscience 2022 (24.02.2022): 1–12. http://dx.doi.org/10.1155/2022/5849995.
Der volle Inhalt der QuelleDabboor, Mohammed, Ghada Atteia, Souham Meshoul und Walaa Alayed. „Deep Learning-Based Framework for Soil Moisture Content Retrieval of Bare Soil from Satellite Data“. Remote Sensing 15, Nr. 7 (03.04.2023): 1916. http://dx.doi.org/10.3390/rs15071916.
Der volle Inhalt der QuelleSaid, Noha Mostafa Mohamed, Sabna Machinchery Ali, Naseema Shaik, Khan Mohamed Jarina Begum, Dr Anwaar Ahmed Abd elLatif Shaban und Dr Betty Elezebeth Samuel. „Analysis of Internet of Things to Enhance Security Using Artificial Intelligence based Algorithm“. Journal of Internet Services and Information Security 14, Nr. 4 (30.11.2024): 590–604. https://doi.org/10.58346/jisis.2024.i4.037.
Der volle Inhalt der QuelleElizabeth Kuukua Woode Amoako, Victor Boateng, Ola Ajay, Tobias Kwame Adukpo und Nicholas Mensah. „Exploring the role of Machine Learning and Deep Learning in Anti-Money Laundering (AML) strategies within U.S. Financial Industry: A systematic review of implementation, effectiveness, and challenges“. Finance & Accounting Research Journal 7, Nr. 1 (13.02.2025): 22–36. https://doi.org/10.51594/farj.v7i1.1808.
Der volle Inhalt der QuelleAlboaneen, Dabiah, Razan Alqarni, Sheikah Alqahtani, Maha Alrashidi, Rawan Alhuda, Eyman Alyahyan und Turki Alshammari. „Predicting Colorectal Cancer Using Machine and Deep Learning Algorithms: Challenges and Opportunities“. Big Data and Cognitive Computing 7, Nr. 2 (13.04.2023): 74. http://dx.doi.org/10.3390/bdcc7020074.
Der volle Inhalt der QuelleDrakaki, Maria, Yannis L. Karnavas, Ioannis A. Tziafettas, Vasilis Linardos und Panagiotis Tzionas. „Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey“. Journal of Industrial Engineering and Management 15, Nr. 1 (01.02.2022): 31. http://dx.doi.org/10.3926/jiem.3597.
Der volle Inhalt der QuelleRhafes, Mohamed Yassine, Omar Moussaoui und Maria Simona Raboaca. „Literature review on forecasting green hydrogen production using machine learning and deep learning“. IAES International Journal of Artificial Intelligence (IJ-AI) 14, Nr. 2 (01.04.2025): 884. https://doi.org/10.11591/ijai.v14.i2.pp884-893.
Der volle Inhalt der QuelleGyamfi, Nana Kwame, und Adam Amril Jaharadak. „Ml/Dl Analytical Approaches to Assist Software Project Managers: Dashboard“. International Journal of Membrane Science and Technology 10, Nr. 1 (17.10.2023): 1075–84. http://dx.doi.org/10.15379/ijmst.v10i1.2748.
Der volle Inhalt der QuelleKhyade, Ms Mahadevi Pundlik. „Artificial Intelligence (AI): Brain Tumor Detection“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 12 (31.12.2024): 761–63. https://doi.org/10.22214/ijraset.2024.65886.
Der volle Inhalt der QuelleNaderisorki, Mohammad, Maryam Rezapour und Mehdi Naderi Soorki. „Investigating the Application of Artificial Intelligence in the Pediatric Oncology“. Journal of Pediatrics Review 12, Nr. 1 (01.01.2024): 1–4. http://dx.doi.org/10.32598/jpr.12.1.786.3.
Der volle Inhalt der QuelleMuhaimil, Ali, Saikiran Pendem, Niranjana Sampathilla, Priya P S, Kaushik Nayak, Krishnaraj Chadaga, Anushree Goswami, Obhuli Chandran M und Abhijit Shirlal. „Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine“. F1000Research 13 (10.10.2024): 1035. http://dx.doi.org/10.12688/f1000research.154680.2.
Der volle Inhalt der QuelleMuhaimil, Ali, Saikiran Pendem, Niranjana Sampathilla, Priya P S, Kaushik Nayak, Krishnaraj Chadaga, Anushree Goswami, Obhuli Chandran M und Abhijit Shirlal. „Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine“. F1000Research 13 (10.09.2024): 1035. http://dx.doi.org/10.12688/f1000research.154680.1.
Der volle Inhalt der QuelleKhanna, Narendra N., Mahesh Maindarkar, Ajit Saxena, Puneet Ahluwalia, Sudip Paul, Saurabh K. Srivastava, Elisa Cuadrado-Godia et al. „Cardiovascular/Stroke Risk Assessment in Patients with Erectile Dysfunction—A Role of Carotid Wall Arterial Imaging and Plaque Tissue Characterization Using Artificial Intelligence Paradigm: A Narrative Review“. Diagnostics 12, Nr. 5 (17.05.2022): 1249. http://dx.doi.org/10.3390/diagnostics12051249.
Der volle Inhalt der Quelle