Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Integrated reconfigurable electronics interface“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Integrated reconfigurable electronics interface" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Integrated reconfigurable electronics interface"
Shi, Chuanqian, Zhanan Zou, Zepeng Lei, Pengcheng Zhu, Wei Zhang und Jianliang Xiao. „Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics“. Science Advances 6, Nr. 45 (November 2020): eabd0202. http://dx.doi.org/10.1126/sciadv.abd0202.
Der volle Inhalt der QuelleChiu, J. C., und T. L. Yeh. „IRES: An integrated software and hardware interface framework for reconfigurable embedded system“. IET Computers & Digital Techniques 4, Nr. 1 (01.01.2010): 27–37. http://dx.doi.org/10.1049/iet-cdt.2009.0010.
Der volle Inhalt der QuelleGuo, Zhiyong, Qiang Li, Haiqi Liu, Bo Yan und Guangjun Li. „An integrated low-voltage ultra-low-power reconfigurable hardware interface in 0.18-µm CMOS“. International Journal of Electronics 98, Nr. 6 (Juni 2011): 685–98. http://dx.doi.org/10.1080/00207217.2011.567038.
Der volle Inhalt der QuelleBédard, Anne-Catherine, Andrea Adamo, Kosi C. Aroh, M. Grace Russell, Aaron A. Bedermann, Jeremy Torosian, Brian Yue, Klavs F. Jensen und Timothy F. Jamison. „Reconfigurable system for automated optimization of diverse chemical reactions“. Science 361, Nr. 6408 (20.09.2018): 1220–25. http://dx.doi.org/10.1126/science.aat0650.
Der volle Inhalt der QuelleDean, Robert N., Colin B. Stevens und John J. Tatarchuk. „A Current-Controlled PCB Integrated MEMS Tilt Mirror“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, DPC (01.01.2014): 000588–608. http://dx.doi.org/10.4071/2014dpc-ta32.
Der volle Inhalt der QuellePrimiani, Rurik A., Kenneth H. Young, André Young, Nimesh Patel, Robert W. Wilson, Laura Vertatschitsch, Billie B. Chitwood, Ranjani Srinivasan, David MacMahon und Jonathan Weintroub. „SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array“. Journal of Astronomical Instrumentation 05, Nr. 04 (Dezember 2016): 1641006. http://dx.doi.org/10.1142/s2251171716410063.
Der volle Inhalt der QuelleBal, Amrita, Jeffery W. Baur, Darren J. Hartl, Geoffrey J. Frank, Thao Gibson, Hong Pan und Gregory H. Huff. „Multi-Layer and Conformally Integrated Structurally Embedded Vascular Antenna (SEVA) Arrays“. Sensors 21, Nr. 5 (04.03.2021): 1764. http://dx.doi.org/10.3390/s21051764.
Der volle Inhalt der QuelleTulpule, Bhal, Bruce Ohme, Mark Larson, Al Behbahani, John Gerety und Al Steines. „A System On Chip (SOC) ASIC chipset for Aerospace and Energy Exploration Applications“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, HITEC (01.01.2014): 000278–84. http://dx.doi.org/10.4071/hitec-tha11.
Der volle Inhalt der QuelleFresi, Francesco, Antonio Malacarne, Vito Sorianello, Gianluca Meloni, Philippe Velha, Michele Midrio, Veronica Toccafondo, Stefano Faralli, Marco Romagnoli und Luca Poti. „Reconfigurable Silicon Photonics Integrated 16-QAM Modulator Driven by Binary Electronics“. IEEE Journal of Selected Topics in Quantum Electronics 22, Nr. 6 (November 2016): 334–43. http://dx.doi.org/10.1109/jstqe.2016.2538725.
Der volle Inhalt der QuelleShi, Chuanqian, Zhanan Zou, Zepeng Lei, Pengcheng Zhu, Guohua Nie, Wei Zhang und Jianliang Xiao. „Stretchable, Rehealable, Recyclable, and Reconfigurable Integrated Strain Sensor for Joint Motion and Respiration Monitoring“. Research 2021 (29.07.2021): 1–14. http://dx.doi.org/10.34133/2021/9846036.
Der volle Inhalt der QuelleDissertationen zum Thema "Integrated reconfigurable electronics interface"
Tchoualack, Tchamako Armel. „Détecteur SiC de particules et électronique de conditionnement“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0176.
Der volle Inhalt der QuelleIt involves both studying a state-of-the-art silicon carbide particles (electrons and neutrons) detector and producing an adaptive integrated reconfigurable electronics interface from hardened technologies for the conditioning and processing electrical signal generated. The electronics front-end will be capable to extract all useful signals (current answer) from the detector having different characteristics (dimensions, response times) and providing resolved data (nature of the particle, spectroscopy, etc.) using on-board processor. Several scenarios of co-integration of the "detector and electronic reading" assembly taking into account the environment of use will be studied to design a particle detector equipped with on-board intelligence and placing the study in the state of art
Yuan, Xiaoyan. „Full-Wave Analyses of Nano-Electromechanical Systems Integrated Multifunctional Reconfigurable Antennas“. DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/443.
Der volle Inhalt der QuelleTang, Xiao. „Vertically and Horizontally Self-assembled Magnetoelectric Heterostructures with Enhanced Properties for Reconfigurable Electronics“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96334.
Der volle Inhalt der QuelleDoctor of Philosophy
Multi-ferroic materials, which contain multiple ferroic orders like ferromagnetism/ferroelectricity order, were widely studied nowadays. These orders are coupled together, which could manipulate one order via another one through the coupling. Due to the achievable reading/writing source (electric field and magnetic field in most of the case), fast response time and larger storage density, magnetoelectric (ME) materials aroused most interests to-date. To be used in different applications, such as memory devices and logic devices, a high transfer efficiency, or say a high coupling coefficient, is required. However, single-phase materials have nearly neglectable ME effect. Therefore, a nanocomposite that contents both magnetostriction and piezoelectricity were investigated to increase the converse magnetoelectric (CME, α) coefficient. Amongst all the nanocomposite, a vertically integrated heterostructure was revealed, which has intimate lattice contact, lower clamping effect, dramatically enhancedα, easier reading direction, and potential to be patterned for complicated applications. In this present work, we focused on several different aspects: (a) creating two-phase vertically integrated heterostructure with different ME materials, which provides much larger α, large strain-induced magnetic shape anisotropy comparing with the single-phased ME nanomaterials; (b): creating a vertically integrated heterostructure with large α and lower losses and higher efficiency; (c) investigate the stable magnetization states that this heterostructure could achieve, which shows the potential of being used in advanced memory devices and logic devices. Firstly, in this work, a BiFeO3-CoFe2O4 (BFO-CFO) heterostructure was epitaxially deposited on the Pb(Mg1/3Nb2/3) O3-x at%PbTiO3 (PMN-xPT), which could boost the CME in the heterostructure to create a much higher α. Then, a novel materials CuFe2O4 (CuFO), was chosen to be self-assembled with BFO, which has lower losses and higher efficiency of the ME effect. Secondly, several self-assembled heterostructures were created, such as Ni0.65Zn0.35Al0.8Fe1.2O4 (NZAFO) with BFO, which manipulated the magnetic coercivity (from 2 Oe to 50 Oe) and magnetic anisotropy directions (Both in-plane and out-of-plane). And a heterostructure: SrRuO3 with CFO, created a vertically integrated heterostructure, could be used as patterned electrodes in different applications. Moreover, magnetization states were studied in all these vertically integrated heterostructures. A multi-states (N≥4) was revealed, which was favored by multiple applications such as multi-level-cell or logical devices. Finally, we deposited a SrRuO3-CoFe2O4 (SRO-CFO) vertically integrated composite thin film on the single crystal substrate PMN-30PT, with a CFO nanopillar and SRO matrix. In such a heterostructure, the SRO would serve as the conductive materials, while CFO offers the insulated property. This unique conductive/insulating heterostructure could be deposited on PMN-PT single crystals, thus mimicking patterned electrodes on the PMN-PT single crystals with enhanced dielectric constant and d_33.
Mopidevi, Hema Swaroop. „Micro Electro Mechanical Systems Integrated Frequency Reconfigurable Antennas for Public Safety Applications“. DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/744.
Der volle Inhalt der QuelleGustafsson, E. Martin I. „Reconfigurable Analog to Digital Converters for Low Power Wireless Applications“. Doctoral thesis, Kista : KTH School of Information and Communication Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4774.
Der volle Inhalt der QuelleZheng, Guizhen. „Low power reconfigurable microwave circuits using RF MEMS switches for wireless systems“. Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-05242005-135940/.
Der volle Inhalt der QuelleJohn Papapolymerou, Committee Chair ; Joy Laskar, Committee Member ; John Cressler, Committee Member ; Alan Doolittle, Committee Member ; Clifford Henderson, Committee Member.
Zheng, Guizhen. „Low Power Reconfigurable Microwave Circuts Using RF MEMS Switches for Wireless Systems“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/11656.
Der volle Inhalt der QuelleYu, Xinyu. „High-temperature Bulk CMOS Integrated Circuits for Data Acquisition“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1144420886.
Der volle Inhalt der QuelleUzelac, Lawrence Stevan. „A Multiple Coupled Microstrip Transmission Line Model for High-Speed VLSI Interconnect Simulation“. PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4526.
Der volle Inhalt der QuelleGray, Richard Scott. „A study of disk performance optimization“. [Johnson City, Tenn. : East Tennessee State University], 2000. http://etd-submit.etsu.edu/etd/theses/available/etd-0313100-181217/unrestricted/ScottGray2-final.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Integrated reconfigurable electronics interface"
Incorporated, Texas Instruments, Hrsg. Data acquisition circuits data book: Data conversion and DSP analog interface. [Dallas, TX]: Texas Instruments, 1998.
Den vollen Inhalt der Quelle findenRoermund, Arthur van. Analog Circuit Design:: Sensor and Actuator Interface Electronics, Integrated High-Voltage Electronics and Power Management, Low-Power and High-Resolution ADC's. U.S.: Springer, 2005.
Den vollen Inhalt der Quelle finden1938-, Huijsing Johan H., Steyaert Michiel 1959- und Roermund, Arthur H. M. van., Hrsg. Analog circuit design: Sensor and actuator interface electronics, integrated high-voltage electronics and power management, low-power and high-resolution ADC's. Boston: Kluwer Academic, 2004.
Den vollen Inhalt der Quelle finden1934-, Furukawa S., National Science Foundation (U.S.), Nihon Gakujutsu Shinkōkai und U.S.-Japan Seminar on "Solid Phase Epitaxy and Interface Kinetics" (1983 : Ōise-machi, Japan), Hrsg. Layered structures and interface kinetics: Their technology and applications. Tokyo: KTK Scientific, 1985.
Den vollen Inhalt der Quelle finden1966-, Baumann Konrad, und Thomas Bruce 1954-, Hrsg. User interface design of electronic appliances. London: Taylor & Francis, 2001.
Den vollen Inhalt der Quelle findenRumsey, Francis, und John Watkinson. Digital Interface Handbook. Taylor & Francis Group, 2013.
Den vollen Inhalt der Quelle findenWatkinson, John. Digital Interface Handbook. Taylor & Francis Group, 2017.
Den vollen Inhalt der Quelle findenRumsey, Francis, und John Watkinson. Digital Interface Handbook. Taylor & Francis Group, 2013.
Den vollen Inhalt der Quelle findenEinspruch, Norman G. Vlsi Electronics: Microstructure Science : Surface and Interface Effects in Vlsi (V L S I Electronics). Academic Pr, 1985.
Den vollen Inhalt der Quelle findenEinspruch, Norman G. Vlsi Electronics: Microstructure Science : Surface and Interface Effects in Vlsi (V L S I Electronics). Academic Pr, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Integrated reconfigurable electronics interface"
Sridevi, G., S. Satyanarayana und P. Sravan Kumar. „Implementing the Reconfigurable Intelligent Sensor Interface in Wireless Networks“. In Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications, 629–36. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4280-5_66.
Der volle Inhalt der QuelleJivet, I. „Architecture of an on Electrode Integrated Electronics with an All Digital Interface for Electrical Impedance Tomography“. In IFMBE Proceedings, 205–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04292-8_45.
Der volle Inhalt der QuelleCapmany, José, und Daniel Pérez. „Field Programmable Photonic Gate Arrays“. In Programmable Integrated Photonics, 301–30. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198844402.003.0009.
Der volle Inhalt der QuelleCapmany, José, und Daniel Pérez. „Introduction to Programmable Integrated Photonics“. In Programmable Integrated Photonics, 1–37. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198844402.003.0001.
Der volle Inhalt der QuelleHadj Youssef Wajih, El. „Secure Smart Card IP“. In Biometrics and Cryptography [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.112491.
Der volle Inhalt der QuelleRamasamy, Prema, Shri Tharanyaa Jothimani Palanivelu und Abin Sathesan. „Certain Applications of LabVIEW in the Field of Electronics and Communication“. In LabVIEW - A Flexible Environment for Modeling and Daily Laboratory Use. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96301.
Der volle Inhalt der QuelleHolmes-Siedle, Andrew, und Len Adams. „Metal-oxide-semiconductor (MOS) devices“. In Handbook of Radiation Effects, 129–204. Oxford University PressOxford, 2002. http://dx.doi.org/10.1093/oso/9780198507338.003.0004.
Der volle Inhalt der QuellePool, Robert. „Business“. In Beyond Engineering. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195107722.003.0008.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Integrated reconfigurable electronics interface"
Lu, Y. C., Julian Cheng, J. C. Zolper und J. Klem. „Multi-functional Surface-Emitting Laser-Based Integrated Photonic/Optoelectronic Switch For Parallel High-Speed Optical Interconnects“. In Photonics in Switching. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/ps.1995.pfb4.
Der volle Inhalt der QuelleSzypicyn, Jakub, Christos Papavassiliou, Georgios Papandroulidakis, Geoff Merrett, Alex Serb, Spyros Stathopoulos und Themis Prodromakis. „Memristor-Enabled Reconfigurable Integrated Circuits“. In 2020 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2020. http://dx.doi.org/10.1109/iceic49074.2020.9051041.
Der volle Inhalt der QuelleTan, Bo, Leibo Liu, Shouyi Yin, Min Zhu, Wen Jia und Shaojun Wei. „An interconnect interface for reconfigurable multimedia system“. In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5768526.
Der volle Inhalt der QuelleSeungkee Min, Sridhar Shashidharan, Mark Stevens, Tino Copani, Sayfe Kiaei, Bertan Bakkaloglu und Sudipto Chakraborty. „A 2mW CMOS MICS-band BFSK transceiver with reconfigurable antenna interface“. In 2010 IEEE Radio Frequency Integrated Circuits Symposium. IEEE, 2010. http://dx.doi.org/10.1109/rfic.2010.5477282.
Der volle Inhalt der QuelleOlsson, Roy H., Kyle Bunch und Christal Gordon. „Reconfigurable Electronics for Adaptive RF Systems“. In 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2016. http://dx.doi.org/10.1109/csics.2016.7751061.
Der volle Inhalt der QuelleKachris, Christoforos, George Nikiforos, Stamatis Kavadias, Vassilis Papaefstathiou und Manolis Katevenis. „Network Processing in Multi-core FPGAs with Integrated Cache-Network Interface“. In 2010 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2010). IEEE, 2010. http://dx.doi.org/10.1109/reconfig.2010.51.
Der volle Inhalt der QuelleYu, Li, Xiaoying Wang und Lei Wang. „A low-power fully differential reconfigurable biomedical electronics interface to detect heart signals“. In Electronics (PrimeAsia). IEEE, 2010. http://dx.doi.org/10.1109/primeasia.2010.5604879.
Der volle Inhalt der QuelleGan, Yuxiang, Zewei Wu, Li Chen, Minxing Wang, Youlei Pu und Yong Luo. „A K-Band Waveguide With Integrated Reconfigurable Circular Polarizer“. In 2023 24th International Vacuum Electronics Conference (IVEC). IEEE, 2023. http://dx.doi.org/10.1109/ivec56627.2023.10157145.
Der volle Inhalt der QuelleKang, Yong Hoon, und Hyuk Lee. „Integrated interface between volume optical memories and electronics“. In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, herausgegeben von Joseph L. Horner, Bahram Javidi und Stephen T. Kowel. SPIE, 1994. http://dx.doi.org/10.1117/12.187315.
Der volle Inhalt der QuelleGaggatur, Javed S., und Gaurab Banerjee. „Integrated temperature sensor for reconfigurable radio frequency synthesizer“. In 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE, 2015. http://dx.doi.org/10.1109/conecct.2015.7383924.
Der volle Inhalt der Quelle