Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Insuline – Sécrétion – Régulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Insuline – Sécrétion – Régulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Insuline – Sécrétion – Régulation"
Blat, Sophie. „Régulation vagale de la sécrétion d'insuline chez le porc“. Rennes, ENSA, 2001. http://www.theses.fr/2001NSARB126.
Der volle Inhalt der QuelleMichau, Aurélien. „Invalidation et activation du transcepteur des sucres GLUT2 : impacts sur la régulation de la prise alimentaire et la sécrétion d'insuline“. Paris 6, 2011. http://www.theses.fr/2011PA066532.
Der volle Inhalt der QuelleVillalpando, Sabrina. „Compartimentalisation et Intégration des signaux de transduction par les «A Kinase Anchoring Proteins» (AKAPs) dans la régulation de la sécrétion d’insuline“. Thesis, Montpellier 1, 2011. http://www.theses.fr/2011MON1T024.
Der volle Inhalt der QuelleInsulin secretion is a major physiological function triggered in the body upon glucose entry into pancreatic β cells. This process is naturally subject to modulation by numerous metabolites, neurotransmitters or hormones. Among the modulatory hormones, incretins, mainly Glucagon Like Peptide (GLP1), act on β cells as physiological amplifiers of glucose-dependent insulin secretion. Incretins are known to recruit the cAMP signaling transduction pathway and their effects on glucose homeostasis represent a current basis for promising anti-diabetic approaches. However, while physiological actions of incretins are well known, the molecular mechanisms underlying these actions are not fully understood.In this thesis, we based our work on the hypothesis that the PKA (cAMP-dependent protein kinase) might potentiate glucose-induced insulin secretion via direct phosphorylation of PKA targets at the level of the exocytosis components, through specific anchoring of the kinase to this microdomain by A-Kinase Anchoring Proteins (AKAPs).The present work involving specific molecular approaches, such as siRNA, cell-permeable peptide competitors, subcellular fractionations as well as confocal and ultrastructural analysis of β cells, culminated to provide compelling evidence that the RIIα PKA isotype is physically associated to mature insulin granules. We demonstrate that in pancreatic β cells, either suppression of RIIαPKA expression or endogenous disruption of RIIαPKA from AKAPs results in almost complete loss of GLP1-induced amplification of insulin secretion.In conclusion, the present work allowed the identification of RIIα as a crucial effector of the cAMP/PKA axis for the amplification by incretins of insulin secretion. This finding represents a first and important step towards the identification of the molecular partners involved in the GLP1-induced PKA-dependent potentiation of insulin exocytosis
Dalle, Stéphane. „Le miniglucagon, nouveau régulateur local de l'îlot de Langerhans“. Montpellier 2, 1998. http://www.theses.fr/1998MON20257.
Der volle Inhalt der QuelleBlanchet, Emilie. „Rôle de E2F1 dans la sécrétion d'insuline, le métabolisme oxydatif, la néoglucogenèse et la lipogenèse. Implication dans le diabète, la dystrophie musculaire et le cancer“. Thesis, Montpellier 1, 2011. http://www.theses.fr/2011MON13506.
Der volle Inhalt der QuelleE2F1, a crucial regulator of metabolism in normal and cancer cells. Abstract: E2F1 is a key transcription factor involved in the control of the cell cycle. We and others have previously demonstrated a a major role for E2F1 in the control of glucose and lipid homeostasis. In this thesis, we showed bu using E2F1 null mice, that E2F1 plays a major role in the control of insulin secretion, oxidative metabolism, lipogenesis and gluconeogenesis. E2F1 controls insulin secretion through the modulation of Kir6.2 expression. Moreover, we demonstrated that E2F1 controls the expression of oxidative genes in BAT and muscle. In addition, we observed that E2F1 is involved in the control of lipogenesis and gluconeogenesis in the liver. E2F1regulates the expression of key lipogenic genes, such as Fas, and G6Pase, a gene involved in hepatic glucose production, through cooperation with foxo-1. Finally, we observed that the inhibition of gluconeogenesis upon E2f1 genetic ablation impaired the formation of lung metastases. These different results show that E2F1 is a key regulator of metabolism, and that modulating its activity could have High outcomes on diseases such as diabetes, obesity, muscular distrophies or cancers.Key words: E2F1, insulin secretion, oxidative metabolism, lipogenesis, gluocneogenesis, cancer
Yepmo, Mélissa. „Signature unique de l’ARN circulaire dans les muscles squelettiques humains de différentes sensibilités à l’insuline“. Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ109.
Der volle Inhalt der QuelleCircular RNAs are a class of non-coding RNAs characterized by a covalently closed loop structure. Functionally, they can act on cell physiology by inhibiting microRNAs and regulating gene and protein expression. The emerging function of circRNAs is not fully understood, but initial studies have recently shown that they are involved in the regulation of insulin secretion. In this work we tried to identify circRNAs in skeletal muscle at the level of glycolytic and oxidative fibers in healthy and type 2 diabetic patients. Our results showed a unique circular RNA signature not only as a function of status (healthy or T2DM) but also as a function of muscle fibre type (triceps or soleus). For the first time, our study has been able to identify a new way of regulating gene and protein expression independently of what is already known in skeletal muscle. These results allowed us to identify new key molecules involved in the development of type 2 diabetes, with the potential to identify new therapeutic targets
Rabhi, Nabil. „Régulation de l'homéostasie du glucose et de la sécrétion d'inuline par le cofacteur transcriptionnel KAT2B - implication dans le développement du diabète de type II : rôle de KAT2B dans la cellule β pancréatique“. Thesis, Lille 2, 2016. http://www.theses.fr/2016LIL2S058.
Der volle Inhalt der QuelleThe Endoplasmic Reticulum (ER) unfolded protein response (UPRer) pathway plays an important role for pancreatic p cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPRer gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germ-line and p-cell specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome wide analysis of Kat2b-regulated genes and functional assays revealed a critical role for Kat2b in maintaining UPRer gene expression and subsequent p-cell function. Importantly, Kat2b expression was decreased in db/db and in human T2D islets and correlated with UPRer genes in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive P-cell function during metabolic stress by controlling UPRer and represents a promising target for T2D prevention and treatment
Papin, Julien. „Bases moléculaires des défauts sécrétoires des cellules ß pancréatiques lors de la glucotoxicité“. Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13986/document.
Der volle Inhalt der QuelleGlucotoxicity, or prolonged exposure to elevated levels of glucose, alters the function of pancreatic??-cells and is involved in diabetes pathogenesis. It has been demonstrated that glucotoxicity modifies gene expression and induces considerable changes in [Ca2+]i and in cAMP-dependent signalling (Dubois et al, Endocrinology, 148(4):1605-14 ; 2007) as well as a it decreases insulin exocytosis in response to glucose and increases apoptosis. The molecular mechanisms of these effects are not known but several observations suggest that changes in gene expression profiles are involved. To address that, a genomic study has been done in the clonal b-cell line INS-1E and revealed important modifications in the expression rates of many genes involved in glucose metabolism and vesicular traffic. This approach also revealed the alteration of cAMP-mediated signalling pathways and as the role of calcium and the importance of the correlation between cAMP and Ca2+-mediated signalling pathways had been shown, it was interesting to address the role of this second messenger in this process. Actually, cAMP regulates the activity of a large number of signalling proteins, it is also an important messenger involved in vesicular traffic, insulin secretion and gene expression. Interestingly, we also found that the expression of the adenylyl cyclase VIII (ADCY8) was largely diminished by glucotoxicity and this suggests that an alteration of cAMP synthesis could be involved in the decrease of insulin secretion in this condition. For this reason, we decided to address the functional consequences of altered ADCY8 expression on cAMP-mediated signalling pathways and on its correlation with the decrease of insulin secretion in glucotoxicity. Our results demonstrate a requirement for ADCY8 in glucose as well as in GLP-1 activated signalling pathways and strongly suggest a central role for ADCY8 in glucotoxicity. Moreover, recent publications suggest the implication of cAMP-mediated signalling pathways in the protection of b-cells against apoptosis induced by glucotoxicity, and the role of ADCY8 in this process was investigated
Bardy, Guillaume. „Effets insulino-sécrétoires et protecteurs de la quercétine au niveau de la cellule beta pancréatique : implication du calcium intracellulaire et de ERK1/2“. Thesis, Montpellier 1, 2012. http://www.theses.fr/2012MON13515/document.
Der volle Inhalt der QuelleIn type 2 diabetes, chronic hyperglycaemia, elevated free fatty acids and inflammation induce oxidative stress (OS) in pancreatic β cell. SO, which appears at the stage of pre-diabetes, may induce early dysfunction of this cell. Thus, the β cell protection by antioxidant molecules could slow the progression of pre-diabetes to diabetes.Quercetin, a flavonoid, has shown antidiabetic properties in several in vivo studies. However, very few data address its mechanism of action directly at the β cell. In this context, we studied the effects of quercetin at the β cell under physiological conditions and conditions of OS.Our results show that in the presence of stimulating concentrations of secretagogue, quercetin potentiates insulin secretion by a mechanism involving increased intracellular calcium and potentiation of ERK1 / 2 via activation of the PKA and the CaMK II pathways. In addition, quercetin protects beta cell from OS via a suractivation of ERK1/2. Resveratrol and NAC, two antioxidants of reference are inactive under these experimental conditions.In the absence of stimulating concentration of secretagogue, quercetin induced moderate insulin secretion by increasing the intracellular calcium via a direct activation of L-type CaV Under these conditions, the activation of ERK1/2 induced by quercetin, which is independent of the activation pathways of PKA and CaMK II to, would not be involved in the secretory mechanism.Our results indicate that the mechanism of action of quercetin at the β cell not only based on its antioxidant capacity but involves pharmacological targets and the regulation of intracellular signaling pathways
Strasser, Perrine. „Rôle du facteur de transcription RFX6 dans la différenciation et la fonction des cellules β sécrétrices d'insuline : identification et étude de gènes cibles“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ088.
Der volle Inhalt der QuelleGlucose homeostasis regulation in the body is the main function of insulin secreting beta cells in the endocrine pancreas. The winged-helix transcription factor RFX6 has recently been identified as a new pancreatic endocrine differentiation regulator, downstream of Ngn3,in zebra fish, mouse and human. Moreover, several Rfx6 mutations in humans were discovered and linked to the Mitchell Riley syndrome, which is characterized by neonatal diabetes, intestinal atresia and malabsorption. My thesis consisted of using an approach combining transcriptomic analysis in mouse and the identification of RFX6 target genes in a beta cell line as well as in pancreatic islets. This work has demonstrated the crucial role of RFX6 in maintaining beta cell identity and function. For the first time, RFX6 target genes were identified in vivo as well as the whole repertoire of directly regulated RFX6 target genesin beta cells, which were previously unidentified in the beta cell line. These studies have also shown that Mlxipl is a main RFX6 regulated target gene in mice and human. Overall, this work has allowed the clear identification of RFX6 target genes, thus contributing inunderstanding the role of this crucial transcription factor in the differentiation and function of insulin secreting beta cells