Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Instability mechanisms.

Zeitschriftenartikel zum Thema „Instability mechanisms“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Instability mechanisms" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Baird, D. M. „Mechanisms of telomeric instability“. Cytogenetic and Genome Research 122, Nr. 3-4 (2008): 308–14. http://dx.doi.org/10.1159/000167817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Thompson, Sarah L., Samuel F. Bakhoum und Duane A. Compton. „Mechanisms of Chromosomal Instability“. Current Biology 20, Nr. 6 (März 2010): R285—R295. http://dx.doi.org/10.1016/j.cub.2010.01.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

He Bai und M. Arcak. „Instability Mechanisms in Cooperative Control“. IEEE Transactions on Automatic Control 55, Nr. 1 (Januar 2010): 258–63. http://dx.doi.org/10.1109/tac.2009.2036301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sharma, G., R. V. Ramanujan und G. P. Tiwari. „Instability mechanisms in lamellar microstructures“. Acta Materialia 48, Nr. 4 (Februar 2000): 875–89. http://dx.doi.org/10.1016/s1359-6454(99)00378-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Venkatesan, Shriram, Adayapalam T. Natarajan und M. Prakash Hande. „Chromosomal instability—mechanisms and consequences“. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 793 (November 2015): 176–84. http://dx.doi.org/10.1016/j.mrgentox.2015.08.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gollin, Susanne M. „Mechanisms leading to chromosomal instability“. Seminars in Cancer Biology 15, Nr. 1 (Februar 2005): 33–42. http://dx.doi.org/10.1016/j.semcancer.2004.09.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shah, Prediman K. „Molecular mechanisms of plaque instability“. Current Opinion in Lipidology 18, Nr. 5 (Oktober 2007): 492–99. http://dx.doi.org/10.1097/mol.0b013e3282efa326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sirignano, William A. „Driving Mechanisms for Combustion Instability“. Combustion Science and Technology 187, Nr. 1-2 (10.12.2014): 162–205. http://dx.doi.org/10.1080/00102202.2014.973801.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gallaire, F., und J. M. Chomaz. „Instability mechanisms in swirling flows“. Physics of Fluids 15, Nr. 9 (05.08.2003): 2622–39. http://dx.doi.org/10.1063/1.1589011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Jinhua, Jinping Liang, Lijia Huang und Tingting Li. „Mechanisms of Atherosclerotic Plaque Instability“. International Journal of Biology and Life Sciences 5, Nr. 1 (22.02.2024): 9–12. http://dx.doi.org/10.54097/83r6jq74.

Der volle Inhalt der Quelle
Annotation:
Cardiovascular disease (CVD) is the leading cause of mortality in humans worldwide. The main cause of CVD is the formation of thrombi due to by unstable atherosclerotic plaque rupture on the arterial wall. Long-term accumulation of thrombi results in vascular remodeling, and subsequent-stenosis of the lumen obstructs the blood flow, thereby leading to myocardial tissue ischemia and hypoxia. Sustained ischemia and hypoxia lead to myocyte necrosis, resulting in irreversible myocardial injury. Many molecular and cellular mechanisms are associated with atherosclerotic plaque instability (API). For example, macrophages can produce various inflammatory factors, adhesion factors, chemokines and matrix metalloproteinases (MMPs), which play important roles in the pathophysiological mechanisms of API and in maintaining plaque stability. These molecules may help predict unstable atherosclerotic plaques. If the plaque is stable, it will not be prone to rupture or thrombosis. Accordingly, in this review, we will discuss the different pathophysiological mechanisms of API and the related roles of macrophages in the mechanisms of API mainly in animal models and humans. We believe this review will provide a theoretical basis for the development of treatments and diagnostic approaches for the management of API.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Hadadi, Mohammad, Ismaeil Ebrahimi, Mohammad Ebrahim Mousavi, Gholamreza Aminian, Ali Esteki und Mehdi Rahgozar. „The effect of combined mechanism ankle support on postural control of patients with chronic ankle instability“. Prosthetics and Orthotics International 41, Nr. 1 (09.07.2016): 58–64. http://dx.doi.org/10.1177/0309364615596068.

Der volle Inhalt der Quelle
Annotation:
Background:Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients.Objectives:The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients.Study design:Cross-sectional study.Methods:An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform.Results:The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support.Conclusion:The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals.Clinical relevanceApplication of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Eyler, Daniel E., Kylie A. Burnham, Thomas E. Wilson und Patrick J. O’Brien. „Mechanisms of glycosylase induced genomic instability“. PLOS ONE 12, Nr. 3 (23.03.2017): e0174041. http://dx.doi.org/10.1371/journal.pone.0174041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Pearson, Christopher E., Kerrie Nichol Edamura und John D. Cleary. „Repeat instability: mechanisms of dynamic mutations“. Nature Reviews Genetics 6, Nr. 10 (Oktober 2005): 729–42. http://dx.doi.org/10.1038/nrg1689.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kim, Seoyoung, Shaun E. Peterson, Maria Jasin und Scott Keeney. „Mechanisms of germ line genome instability“. Seminars in Cell & Developmental Biology 54 (Juni 2016): 177–87. http://dx.doi.org/10.1016/j.semcdb.2016.02.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Filipič, Metka. „Mechanisms of cadmium induced genomic instability“. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 733, Nr. 1-2 (Mai 2012): 69–77. http://dx.doi.org/10.1016/j.mrfmmm.2011.09.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jefford, Charles Edward, und Irmgard Irminger-Finger. „Mechanisms of chromosome instability in cancers“. Critical Reviews in Oncology/Hematology 59, Nr. 1 (Juli 2006): 1–14. http://dx.doi.org/10.1016/j.critrevonc.2006.02.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bayly, B. J., S. A. Orszag und T. Herbert. „Instability Mechanisms in Shear-Flow Transition“. Annual Review of Fluid Mechanics 20, Nr. 1 (Januar 1988): 359–91. http://dx.doi.org/10.1146/annurev.fl.20.010188.002043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Libby, Peter. „Mechanisms Underlying Instability of Atherosclerotic Plaques“. Journal of Vascular and Interventional Radiology 7, Nr. 1 (Januar 1996): 26–27. http://dx.doi.org/10.1016/s1051-0443(96)70018-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Glover, Thomas W., Martin F. Arlt, Anne M. Casper und Sandra G. Durkin. „Mechanisms of common fragile site instability“. Human Molecular Genetics 14, suppl_2 (15.10.2005): R197—R205. http://dx.doi.org/10.1093/hmg/ddi265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Dreher, T. M., und G. W. Stevens. „Instability Mechanisms of Supported Liquid Membranes“. Separation Science and Technology 33, Nr. 6 (Januar 1998): 835–53. http://dx.doi.org/10.1080/01496399808544879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Graziano, Simona, und Susana Gonzalo. „Mechanisms of oncogene-induced genomic instability“. Biophysical Chemistry 225 (Juni 2017): 49–57. http://dx.doi.org/10.1016/j.bpc.2016.11.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kaufmann, William K., Craig C. Carson, Bernard Omolo, Adam J. Filgo, Maria J. Sambade, Dennis A. Simpson, Janiel M. Shields, Joseph G. Ibrahim und Nancy E. Thomas. „Mechanisms of chromosomal instability in melanoma“. Environmental and Molecular Mutagenesis 55, Nr. 6 (24.02.2014): 457–71. http://dx.doi.org/10.1002/em.21859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

JIANG, HAN, MING-WEN CHEN und ZI-DONG WANG. „EFFECT OF ANISOTROPIC SURFACE TENSION ON THE MORPHOLOGICAL STABILITY OF DEEP CELLULAR CRYSTAL GROWTH IN DIRECTIONAL SOLIDIFICATION“. Surface Review and Letters 26, Nr. 06 (Juli 2019): 1850210. http://dx.doi.org/10.1142/s0218625x18502104.

Der volle Inhalt der Quelle
Annotation:
This paper studies the effect of anisotropic surface tension on the morphological stability of deep cellular crystal in directional solidification by using the matched asymptotic expansion method and multiple variable expansion method. We find that the morphological stability of deep cellular crystal growth with anisotropic surface tension shows the same mechanism as that with isotropic surface tension. The deep cellular crystal growth contains two types of global instability mechanisms: the global oscillatory instability, whose neutral modes yield strong oscillatory dendritic structures, and the low-frequency instability, whose neutral modes yield weakly oscillatory cellular structures. Anisotropic surface tension has the significant effect on the two global instability mechanisms. As the anisotropic surface tension increases, the unstable domain of global oscillatory instability decreases, whereas the unstable domain of the global low-frequency instability increases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cox, John P. „Theory of Cepheid Pulsation: Excitation Mechanisms“. International Astronomical Union Colloquium 82 (1985): 126–46. http://dx.doi.org/10.1017/s0252921100109248.

Der volle Inhalt der Quelle
Annotation:
AbstractThe various excitation mechanisms (eight in all) that have been proposed to account for the vibrational instability of variable stars, are surveyed. The most widely applied one is perhaps the “envelope ionization mechanism.” This can account for most of the essential characteristics of the “instability strip.” A simple explanation of the period-luminosity relation of classical Cepheids is given. A few outstanding problems in pulsation theory are also listed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pavalavanni, Pradeep Kumar, Min-Seon Jo, Jae-Eun Kim und Jeong-Yeol Choi. „Numerical Study of Unstable Shock-Induced Combustion with Different Chemical Kinetics and Investigation of the Instability Using Modal Decomposition Technique“. Aerospace 10, Nr. 3 (15.03.2023): 292. http://dx.doi.org/10.3390/aerospace10030292.

Der volle Inhalt der Quelle
Annotation:
An unstable shock-induced combustion (SIC) case around a hemispherical projectile has been numerically studied which experimentally produced a regular oscillation. Comparison of detailed H2/O2 reaction mechanisms is made for the numerical simulation of SIC with higher-order numerical schemes intended for the use of the code for the hypersonic propulsion and supersonic combustion applications. The simulations show that specific reaction mechanisms are grid-sensitive and produce spurious reactions in the high-temperature region, which trigger artificial instability in the oscillating flow field. The simulations also show that specific reaction mechanisms develop such spurious oscillations only at very fine grid resolutions. The instability mechanism is investigated using the dynamic mode decomposition (DMD) technique and the spatial structure of the decomposed modes are further analyzed. It is found that the instability triggered by the high-temperature reactions strengthens the reflecting compression wave and pushes the shock wave further and disrupts the regularly oscillating mechanism. The spatial coherent structure from the DMD analysis shows the effect of this instability in different regions in the regularly oscillating flow field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bernier, D., F. Lacas und S. Candel. „Instability Mechanisms in a Premixed Prevaporized Combustor“. Journal of Propulsion and Power 20, Nr. 4 (Juli 2004): 648–56. http://dx.doi.org/10.2514/1.11461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wright, E. G. „Radiation-induced genomic instability: manifestations and mechanisms“. International Journal of Low Radiation 1, Nr. 2 (2004): 231. http://dx.doi.org/10.1504/ijlr.2004.003875.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Smith, Marc K. „Instability mechanisms in dynamic thermocapillary liquid layers“. Physics of Fluids 29, Nr. 10 (1986): 3182. http://dx.doi.org/10.1063/1.865836.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Wanschura, M., V. M. Shevtsova, H. C. Kuhlmann und H. J. Rath. „Convective instability mechanisms in thermocapillary liquid bridges“. Physics of Fluids 7, Nr. 5 (Mai 1995): 912–25. http://dx.doi.org/10.1063/1.868567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Shtern, Vladimir. „Mechanisms of jet instability: role of deceleration“. Fluid Dynamics Research 50, Nr. 5 (02.08.2018): 051408. http://dx.doi.org/10.1088/1873-7005/aab0fc.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Jotkar, Mamta, José Miguel Pérez, Vassilis Theofilis und Rama Govindarajan. „Instability Mechanisms in Straight-Diverging-Straight Channels“. Procedia IUTAM 14 (2015): 236–45. http://dx.doi.org/10.1016/j.piutam.2015.03.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bichara, M., J. Wagner und I. B. Lambert. „Mechanisms of tandem repeat instability in bacteria“. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 598, Nr. 1-2 (Juni 2006): 144–63. http://dx.doi.org/10.1016/j.mrfmmm.2006.01.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Duijf, Pascal H. G., Devathri Nanayakkara, Katia Nones, Sriganesh Srihari, Murugan Kalimutho und Kum Kum Khanna. „Mechanisms of Genomic Instability in Breast Cancer“. Trends in Molecular Medicine 25, Nr. 7 (Juli 2019): 595–611. http://dx.doi.org/10.1016/j.molmed.2019.04.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

KOMAROVA, NATALIA L., und SUZANNE J. M. H. HULSCHER. „Linear instability mechanisms for sand wave formation“. Journal of Fluid Mechanics 413 (25.06.2000): 219–46. http://dx.doi.org/10.1017/s0022112000008429.

Der volle Inhalt der Quelle
Annotation:
A height- and flow-dependent model for turbulent viscosity is employed to explain the generation of sand waves in tidal seas. This new model resolves the problem of excitation of very long waves in sand wave formation, because it leads to damping of the long waves and gives a finite separation between the most excited mode and the zero mode. For parameters within their physically realistic ranges, a linear analysis of the resulting system yields a first excited mode whose wavelength is similar to the characteristic wavelength of sand waves observed in nature. The physical mechanism of sand wave formation as predicted by the new model is explained in detail. The dispersion relation obtained can be the starting point for a weakly nonlinear analysis of the system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Luongo, A., und G. Piccardo. „Linear instability mechanisms for coupled translational galloping“. Journal of Sound and Vibration 288, Nr. 4-5 (Dezember 2005): 1027–47. http://dx.doi.org/10.1016/j.jsv.2005.01.056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Riyopoulos, Spilios. „Instability mechanisms in storage-ring FEL oscillators“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 296, Nr. 1-3 (Oktober 1990): 485–98. http://dx.doi.org/10.1016/0168-9002(90)91255-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

de Cárcer, Guillermo, Pablo Huertas und Andres J. López-Contreras. „Chromosome instability: From molecular mechanisms to disease“. DNA Repair 66-67 (Juni 2018): 72–75. http://dx.doi.org/10.1016/j.dnarep.2018.04.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tsetseris, L., X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf und S. T. Pantelides. „Physical mechanisms of negative-bias temperature instability“. Applied Physics Letters 86, Nr. 14 (04.04.2005): 142103. http://dx.doi.org/10.1063/1.1897075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hasson, Alam S., und Rhon E. Manor. „Steady-state instability in tropospheric chemical mechanisms“. Atmospheric Environment 37, Nr. 34 (November 2003): 4735–45. http://dx.doi.org/10.1016/j.atmosenv.2003.08.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Debatisse, Michelle, Benoît Le Tallec, Anne Letessier, Bernard Dutrillaux und Olivier Brison. „Common fragile sites: mechanisms of instability revisited“. Trends in Genetics 28, Nr. 1 (Januar 2012): 22–32. http://dx.doi.org/10.1016/j.tig.2011.10.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zheng, S. J., J. Wang, J. S. Carpenter, W. M. Mook, P. O. Dickerson, N. A. Mara und I. J. Beyerlein. „Plastic instability mechanisms in bimetallic nanolayered composites“. Acta Materialia 79 (Oktober 2014): 282–91. http://dx.doi.org/10.1016/j.actamat.2014.07.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Schoisswohl, U., und H. C. Kuhlmann. „Instability mechanisms in buoyant-thermocapillary liquid pools“. PAMM 7, Nr. 1 (Dezember 2007): 4100031–32. http://dx.doi.org/10.1002/pamm.200700696.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Beale, David, und Shyr Wen Lee. „Nonlinear equation instability boundaries in flexible mechanisms“. Mechanism and Machine Theory 31, Nr. 2 (Februar 1996): 215–27. http://dx.doi.org/10.1016/0094-114x(95)00063-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Blalock, Darryl, Andrew Miller, Michael Tilley und Jinxi Wang. „Joint Instability and Osteoarthritis“. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders 8 (Januar 2015): CMAMD.S22147. http://dx.doi.org/10.4137/cmamd.s22147.

Der volle Inhalt der Quelle
Annotation:
Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hackett, Jennifer A., und Carol W. Greider. „End Resection Initiates Genomic Instability in the Absence of Telomerase“. Molecular and Cellular Biology 23, Nr. 23 (01.12.2003): 8450–61. http://dx.doi.org/10.1128/mcb.23.23.8450-8461.2003.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Telomere dysfunction causes genomic instability. However, the mechanism that initiates this instability when telomeres become short is unclear. We measured the mutation rate and loss of heterozygosity along a chromosome arm in diploid yeast that lacked telomerase to distinguish between mechanisms for the initiation of instability. Sequence loss was localized near chromosome ends in the absence of telomerase but not after breakage of a dicentric chromosome. In the absence of telomerase, the increase in mutation rate is dependent on the exonuclease Exo1p. Thus, exonucleolytic end resection, rather than chromosome fusion and breakage, is the primary mechanism that initiates genomic instability when telomeres become short.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Appenzeller, I. „Instability in Massive Stars: An Overview“. Symposium - International Astronomical Union 116 (1986): 139–49. http://dx.doi.org/10.1017/s0074180900148831.

Der volle Inhalt der Quelle
Annotation:
Dynamical, vibrational, and thermal instabilities of massive blue stars are discussed as possible mechanisms for the observed brightness variations of such objects. Relaxation oscillations (on local thermal time scales) due to dynamical instabilities of the stellar wind flows appear to be the most likely mechanism, at least for the S Dor variables. Very massive main-sequence stars with M > 103 M⊙ should be violently vibrationally unstable and therefore should differ significantly from stable main-sequence stars of lower mass.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Lam, Michael-Angelo Y. H., Linda J. Cummings und Lou Kondic. „Stability of thin fluid films characterised by a complex form of effective disjoining pressure“. Journal of Fluid Mechanics 841 (01.03.2018): 925–61. http://dx.doi.org/10.1017/jfm.2017.919.

Der volle Inhalt der Quelle
Annotation:
We discuss instabilities of fluid films of nanoscale thickness, with a particular focus on films where the destabilising mechanism allows for linear instability, metastability, and absolute stability, depending on the mean film thickness. Our study is motivated by nematic liquid crystal films; however, we note that similar instability mechanisms, and forms of the effective disjoining pressure, appear in other contexts, such as the well-studied problem of polymeric films on two-layered substrates. The analysis is carried out within the framework of the long-wave approximation, which leads to a fourth-order nonlinear partial differential equation for the film thickness. Within the considered formulation, the nematic character of the film leads to an additional contribution to the disjoining pressure, changing its functional form. This effective disjoining pressure is characterised by the presence of a local maximum for non-vanishing film thickness. Such a form leads to complicated instability evolution that we study by analytical means, including the application of marginal stability criteria, and by extensive numerical simulations that help us develop a better understanding of instability evolution in the nonlinear regime. This combination of analytical and computational techniques allows us to reach novel understanding of relevant instability mechanisms, and of their influence on transient and fully developed fluid film morphologies. In particular, we discuss in detail the patterns of drops that form as a result of instability, and how the properties of these patterns are related to the instability mechanisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Cuceu, Corina, Bruno Colicchio, Eric Jeandidier, Steffen Junker, François Plassa, Grace Shim, Justyna Mika et al. „Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability“. Cancers 10, Nr. 7 (13.07.2018): 233. http://dx.doi.org/10.3390/cancers10070233.

Der volle Inhalt der Quelle
Annotation:
Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. Conclusions: In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Embacher, Martin, und H. F. Fasel. „Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence“. Journal of Fluid Mechanics 747 (14.04.2014): 141–85. http://dx.doi.org/10.1017/jfm.2014.123.

Der volle Inhalt der Quelle
Annotation:
AbstractLaminar separation bubbles generated on a flat plate by an adverse pressure gradient are investigated using direct numerical simulations (DNSs). Two-dimensional periodic forcing is applied at a blowing/suction slot upstream of separation. Control of separation through forcing with various frequencies and amplitudes is examined. For the investigation of absolute instability mechanisms, baseflows provided by two-dimensional Navier–Stokes calculations are analysed by introducing pulse disturbances and computing the three-dimensional flow response using DNS. The primary instability of the time-averaged flow is investigated with a local linear stability analysis. Employing a steady flow solution as baseflow, the nonlinear and non-parallel effects on the self-sustained disturbance development are illustrated, and a feedback mechanism facilitated by the upstream flow deformation is identified. Secondary instability is investigated locally using spatially periodic baseflows. The flow response to pulsed forcing indicates the existence of an absolute secondary instability mechanism, and the results indicate that this mechanism is dependent on the periodic forcing. Results from three-dimensional DNS provide insight into the global instability mechanisms of separation bubbles and complement the local analysis. A forcing strategy was devised that suppresses the temporal growth of three-dimensional disturbances, and as a consequence, breakdown to turbulence does not occur. Even for a separation bubble that has transitioned to turbulence, the flow relaminarizes when applying two-dimensional periodic forcing with proper frequencies and amplitudes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Czechowski, L., und J. M. Floryan. „Marangoni Instability in a Finite Container-Transition Between Short and Long Wavelengths Modes“. Journal of Heat Transfer 123, Nr. 1 (27.09.2000): 96–104. http://dx.doi.org/10.1115/1.1339005.

Der volle Inhalt der Quelle
Annotation:
Marangoni instability in a finite container with a deformable interface in the absence of gravity has been investigated. It is shown that the critical Marangoni number Macr is a non-monotonic function of the length of the container. Two different physical mechanisms driving convection are indicated. The advection of heat is essential for the first, advective (“classical”) mechanism that gives rise to short wavelength modes. The interface deformation is essential for the second mechanism that gives rise to long wavelength modes. If the container is sufficiently long, the second mechanism leads to an unconditional instability. The available results suggest that the unconditional instability leads to segmentation of the interface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie