Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Instability mechanisms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Instability mechanisms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Instability mechanisms"
Baird, D. M. „Mechanisms of telomeric instability“. Cytogenetic and Genome Research 122, Nr. 3-4 (2008): 308–14. http://dx.doi.org/10.1159/000167817.
Der volle Inhalt der QuelleThompson, Sarah L., Samuel F. Bakhoum und Duane A. Compton. „Mechanisms of Chromosomal Instability“. Current Biology 20, Nr. 6 (März 2010): R285—R295. http://dx.doi.org/10.1016/j.cub.2010.01.034.
Der volle Inhalt der QuelleHe Bai und M. Arcak. „Instability Mechanisms in Cooperative Control“. IEEE Transactions on Automatic Control 55, Nr. 1 (Januar 2010): 258–63. http://dx.doi.org/10.1109/tac.2009.2036301.
Der volle Inhalt der QuelleSharma, G., R. V. Ramanujan und G. P. Tiwari. „Instability mechanisms in lamellar microstructures“. Acta Materialia 48, Nr. 4 (Februar 2000): 875–89. http://dx.doi.org/10.1016/s1359-6454(99)00378-x.
Der volle Inhalt der QuelleVenkatesan, Shriram, Adayapalam T. Natarajan und M. Prakash Hande. „Chromosomal instability—mechanisms and consequences“. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 793 (November 2015): 176–84. http://dx.doi.org/10.1016/j.mrgentox.2015.08.008.
Der volle Inhalt der QuelleGollin, Susanne M. „Mechanisms leading to chromosomal instability“. Seminars in Cancer Biology 15, Nr. 1 (Februar 2005): 33–42. http://dx.doi.org/10.1016/j.semcancer.2004.09.004.
Der volle Inhalt der QuelleShah, Prediman K. „Molecular mechanisms of plaque instability“. Current Opinion in Lipidology 18, Nr. 5 (Oktober 2007): 492–99. http://dx.doi.org/10.1097/mol.0b013e3282efa326.
Der volle Inhalt der QuelleSirignano, William A. „Driving Mechanisms for Combustion Instability“. Combustion Science and Technology 187, Nr. 1-2 (10.12.2014): 162–205. http://dx.doi.org/10.1080/00102202.2014.973801.
Der volle Inhalt der QuelleGallaire, F., und J. M. Chomaz. „Instability mechanisms in swirling flows“. Physics of Fluids 15, Nr. 9 (05.08.2003): 2622–39. http://dx.doi.org/10.1063/1.1589011.
Der volle Inhalt der QuelleHuang, Jinhua, Jinping Liang, Lijia Huang und Tingting Li. „Mechanisms of Atherosclerotic Plaque Instability“. International Journal of Biology and Life Sciences 5, Nr. 1 (22.02.2024): 9–12. http://dx.doi.org/10.54097/83r6jq74.
Der volle Inhalt der QuelleDissertationen zum Thema "Instability mechanisms"
Valkhoff, Nienke Jeltje Marjoke. „Stabilization by competing instability mechanisms“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2006. http://dare.uva.nl/document/37776.
Der volle Inhalt der QuelleAkl, Sherif Adel. „Wellbore instability mechanisms in clays“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/64569.
Der volle Inhalt der Quelle"February 2011." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 331-341).
This dissertation investigates the stability of wellbores drilled in Ko-consolidated clays using non-linear finite element method (FEM) and effective stress soil models to characterize the behavior of clay and unconsolidated shale formations. Two constitutive models are used: Modified Cam Clay (MCC; Roscoe and Burland, 1968), and MIT-E3 (Whittle and Kavvadas, 1994). These soil models are incorporated in the commercial finite element program ABAQUS TM through user material subroutines (Hashash, 1992). The wellbores are modeled by a quasi-3D finite element model to approximate the far field stresses and plane strain boundary conditions. The constitutive models are calibrated to the behavior of Resedimented Boston Blue Clay (RBBC), an analog shale material which is Ko-consolidated to stress levels ranging from 0.15MPa to 10.0 MPa. The thesis comprises three major parts. Part one analyzes the short-term wellbore instability during drilling in low permeability formations. The part focuses on the relationship between the mud pressure inside the wellbore and the undrained shear deformations within the formations. The analyses predict critical mud pressure values necessary to maintain wellbore stability at different deviation angles and stress histories. The MIT-E3 model predicted higher deformations at reference mud pressure and estimated higher values of mud pressures than the underbalanced limit to prevent failure in highly deviated wellbores in NC clays. The second part validates the numerical analyses by comparing model predictions to results of an extensive program of model borehole tests. The lab experiments are performed on high pressure Thick- Walled Cylinder (TWC devices) using RBBC as analog testing material (Abdulhadi, 2009). The MIT-E3 predictions demonstrated a very good match with results from the experiments. The results from the analyses illustrated the effect of the device boundary conditions on specimen behavior and validated approximate analytical methods for interpreting TWC results. Part three studies the effects of consolidation on long-term wellbore stability. Non-linear coupled consolidation analyses are performed to simulate the post-drilling, time-dependent deformations and pore pressures around the wellbore. The analyses consider two different boundary conditions on seepage at the cavity. The analyses show that consolidation generates extensive volumetric strains around the wellbore and cavity deformations can aggravate stability conditions in highly deviated wellbores.
by Sherif Adel Akl.
Ph.D.
Perkins, Adam Christopher. „Mechanisms of instability in Rayleigh-Bénard convection“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42768.
Der volle Inhalt der QuelleThirthagiri, Eswary. „Mechanisms of genomic instability in oral cancer“. Thesis, University of Bristol, 2005. http://hdl.handle.net/1983/dc1b9061-be5b-4839-a266-de82fd1da5cf.
Der volle Inhalt der QuelleHackett, Jennifer. „Telomere dysfunction and mechanisms of genomic instability“. Available to US Hopkins community, 2003. http://wwwlib.umi.com/dissertations/dlnow/3080673.
Der volle Inhalt der QuelleChan, Kara Y. „MECHANISMS OF TRINUCLEOTIDE REPEAT INSTABILITY DURING DNA SYNTHESIS“. UKnowledge, 2019. https://uknowledge.uky.edu/toxicology_etds/29.
Der volle Inhalt der QuelleLieuwen, Tim C. „Investigation of combustion instability mechanisms in premixed gas turbines“. Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20300.
Der volle Inhalt der QuelleOzols, Agris. „Low-dose studies of genomic instability-mechanisms and targets“. Thesis, Queen Mary, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271260.
Der volle Inhalt der QuelleLee, A. J. X. „An investigation of chromosomal instability survival mechanisms in cancer“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344056/.
Der volle Inhalt der QuelleBarsoum, Nader N. „Analysis and computation of instability mechanisms in rotating electrical machinery“. Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328149.
Der volle Inhalt der QuelleBücher zum Thema "Instability mechanisms"
United States. National Aeronautics and Space Administration, Hrsg. Jet fuel instability mechanisms. [Washington, DC: National Aeronautics and Space Administration, 1985.
Den vollen Inhalt der Quelle findenEuropean Environmental Mutagen Society. Meeting. Workshop on chromosome instability and cell cycle control: Istituto Superiore di Sanità, Rome, September 3-7, 1996 : abstract book. Roma: L'Istituto, 1996.
Den vollen Inhalt der Quelle findenFrançois, Malburet, Hrsg. Mechanical instability. London, UK: ISTE, 2011.
Den vollen Inhalt der Quelle findenErickson, Gary M. A mechanism for magnetospheric substorms. [Washington, D.C: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenHall, Philip. Instability of time-periodic flows. Hampton, Va: [Institute for Computer Applications in Science and Engineering], National Aeronautics and Space Administration, Langley Research Center, 1985.
Den vollen Inhalt der Quelle findenHall, Philip. Instability of time-periodic flows. Hampton, Va: [Institute for Computer Applications in Science and Engineering], National Aeronautics and Space Administration, Langley Research Center, 1985.
Den vollen Inhalt der Quelle findenHussaini, M. Y. Instability, Transition, and Turbulence. New York, NY: Springer New York, 1992.
Den vollen Inhalt der Quelle findenHall, Philip. On the Gortler vortex instability mechanism at hypersonic speeds. Hampton, Va: ICASE, 1989.
Den vollen Inhalt der Quelle findenHall, Philip. On the Goertler vortex instability mechanism at hypersonic speeds. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenLiou, William W. Linear instability of curved free shear layers. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Instability mechanisms"
Meng, Fanbiao, Baohua Liu und Zhongjun Zhou. „Progeria and Genome Instability“. In Aging Mechanisms, 51–63. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55763-0_3.
Der volle Inhalt der QuelleCutsem, Thierry, und Costas Vournas. „Instability Mechanisms and Countermeasures“. In Voltage Stability of Electric Power Systems, 263–98. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-0-387-75536-6_8.
Der volle Inhalt der QuelleKoga, Hideyuki, Takeshi Muneta, Roald Bahr, Lars Engebretsen und Tron Krosshaug. „ACL Injury Mechanisms: Lessons Learned from Video Analysis“. In Rotatory Knee Instability, 27–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32070-0_3.
Der volle Inhalt der QuelleParniewski, Pawel, und Pawel Staczek. „Molecular Mechanisms of TRS Instability“. In Triple Repeat Diseases of the Nervous Systems, 1–25. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0117-6_1.
Der volle Inhalt der QuelleWells, Robert D., Albino Bacolla und Richard P. Bowater. „Instabilities of Triplet Repeats: Factors and Mechanisms“. In Trinucleotide Diseases and Instability, 133–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-69680-3_4.
Der volle Inhalt der QuelleCoppola, Luigi. „Landslides Types and Their Failure Mechanisms“. In Hydrogeological Instability in Cohesive Soils, 225–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74331-8_7.
Der volle Inhalt der QuellePeters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann et al. „Chromosome Instability Facial Anomalies“. In Encyclopedia of Molecular Mechanisms of Disease, 354. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8928.
Der volle Inhalt der QuelleBelyaev, A. K. „Example of Instability in Drive Mechanisms“. In Advanced Dynamics and Model-Based Control of Structures and Machines, 35–42. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0797-3_5.
Der volle Inhalt der QuelleRyutova, Margarita. „Explosive Instability in Solar Coronal Loops“. In Mechanisms of Chromospheric and Coronal Heating, 159–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_34.
Der volle Inhalt der QuelleBarrey, Cédric, Mehdi Afathi, Théo Broussolle, Corentin Dauleac und Philippe Bancel. „Craniovertebral Junction Instability and Mechanisms of Injury“. In Surgery of the Cranio-Vertebral Junction, 291–305. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18700-2_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Instability mechanisms"
Bai, He, und Murat Arcak. „Instability mechanisms in cooperative control“. In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4738887.
Der volle Inhalt der Quelle„Shear coaxial injector instability mechanisms“. In 30th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2774.
Der volle Inhalt der QuelleHEGDE, U., D. REUTER und B. ZINN. „Combustion instability mechanisms in ramjets“. In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-150.
Der volle Inhalt der QuelleDaouadji, A., H. Al Gali und F. Darve. „Triggering mechanisms of soil instability“. In DEBRIS FLOW 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/deb060261.
Der volle Inhalt der QuelleSandberg, Richard, und Hermann Fasel. „Instability Mechanisms in Supersonic Base Flows“. In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-593.
Der volle Inhalt der QuelleKlompas, Nicholas. „Predicting Engine Whirl Instability Via Equivalent 2D Mechanisms“. In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30422.
Der volle Inhalt der QuelleNG, LIAN, und THOMAS ZANG. „Secondary instability mechanisms in compressible, axisymmetric boundary layers“. In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-743.
Der volle Inhalt der QuelleShipley, Kevin J., William E. Anderson, Matthew E. Harvazinski und Venkateswaran Sankaran. „A Computational Study of Transverse Combustion Instability Mechanisms“. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-3680.
Der volle Inhalt der QuelleMukaiyama, Kenji, und Kazunori Kuwana. „Influence of Flame Front Instability on Flame Propagation Behavior“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44223.
Der volle Inhalt der QuelleCheredov, Alexander I., und Andrey V. Shchelkanov. „Displacement sensors with frequency output based on helical instability“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005645.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Instability mechanisms"
Forest, Greg, und Stephen Bechtel. Modeling of Free Viscoelastic Jets and Instability Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, März 1990. http://dx.doi.org/10.21236/ada221672.
Der volle Inhalt der QuelleShipley, Kevin J., William E. Anderson, Matthew E. Harvazinski und Venkateswaran Sankaran. A Computational Study of Transverse Combustion Instability Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada615844.
Der volle Inhalt der QuelleDynan, William S. Final Technical Report - Mechanisms and pathways controlling genomic instability. Office of Scientific and Technical Information (OSTI), Mai 2013. http://dx.doi.org/10.2172/1081424.
Der volle Inhalt der QuelleEngelward, Bevin P. Mechanisms of Low Dose Radio-Suppression of Genomic Instability. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/963997.
Der volle Inhalt der QuelleNussenzweig, Andre. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada579479.
Der volle Inhalt der QuelleNussenzweig, Andre. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells. Fort Belvoir, VA: Defense Technical Information Center, März 2013. http://dx.doi.org/10.21236/ada583192.
Der volle Inhalt der QuelleNussenzweig, Andre. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells. Fort Belvoir, VA: Defense Technical Information Center, März 2014. http://dx.doi.org/10.21236/ada601775.
Der volle Inhalt der QuelleHoward L. Liber und Jeffrey L. Schwartz. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells. Office of Scientific and Technical Information (OSTI), Oktober 2005. http://dx.doi.org/10.2172/887495.
Der volle Inhalt der QuelleLiber, Howard L. Molecular mechanisms of radiation-induced genomic instability in human cells. Office of Scientific and Technical Information (OSTI), Februar 2003. http://dx.doi.org/10.2172/811204.
Der volle Inhalt der QuelleBarry D. Michael, Kathryn Held und Kevin Prise. Low Dose Studies with Focused X-rays in Cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses. Office of Scientific and Technical Information (OSTI), Dezember 2002. http://dx.doi.org/10.2172/806813.
Der volle Inhalt der Quelle