Auswahl der wissenschaftlichen Literatur zum Thema „Ink jet printmaking technology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ink jet printmaking technology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Ink jet printmaking technology":

1

Peeters, E., und S. Verdonckt-Vandebroek. „Thermal ink jet technology“. IEEE Circuits and Devices Magazine 13, Nr. 4 (Juli 1997): 19–23. http://dx.doi.org/10.1109/101.600705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Haysom, Peter. „Improvements in ink-jet technology“. Data Processing 27, Nr. 7 (September 1985): 31–33. http://dx.doi.org/10.1016/0011-684x(85)90095-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jeong, Kyoung-Mo, und Yong-Kyu Lee. „Advanced Technology and Prospect of the Ink-jet Printing (I) - Ink Characteristics and Ink-jet Paper -“. Journal of Korea Technical Association of the Pulp and Paper Industry 52, Nr. 6 (31.12.2020): 5–16. http://dx.doi.org/10.7584/jktappi.2020.12.52.6.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Ya Ling, Xi Guo, Xiao Juan Feng und Lu Hai Li. „Graphene Oxide for Ink-Jet Printing Technology“. Applied Mechanics and Materials 748 (April 2015): 77–80. http://dx.doi.org/10.4028/www.scientific.net/amm.748.77.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In order to acquire a suitable ink for ink-jet printing technology, a graphene oxide ink was explored based on the GO aqueous dispersion. The GO dispersion was characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The average particle diameter and zeta potential of the GO dispersion was determined by zeta potential & particle size analyzer. The GO ink is composed of 1,2-propanediol, diethylene glycol monobutyl ether, glycerol, polyvinyl pyrrolidone (PVP) and GO dispersion. The surface tension and viscosity of the GO ink was tested by surface tension meter and rheometer. The GO ink was inkjet printed on polyethylene terephthalate (PET) substrate. The optimal inkjet printing parameters were obtained and the printing quality was characterized by confocal laser scanning microscopy. The results show that the GO ink is suitable for inkjet printing technology and the morphology of the GO film with one printing pass has good uniformity.
5

KOSEKI, Ken'ichi. „Recent Advanced Ink Jet Printing Technology“. Journal of the Japan Society of Colour Material 85, Nr. 6 (2012): 254–58. http://dx.doi.org/10.4011/shikizai.85.254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Spinelli, Harry J. „Polymeric Dispersants in Ink Jet Technology“. Advanced Materials 10, Nr. 15 (Oktober 1998): 1215–18. http://dx.doi.org/10.1002/(sici)1521-4095(199810)10:15<1215::aid-adma1215>3.0.co;2-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Croucher, Melvin D., und Michael L. Hair. „Design criteria and future directions in ink-jet ink technology“. Industrial & Engineering Chemistry Research 28, Nr. 11 (November 1989): 1712–18. http://dx.doi.org/10.1021/ie00095a023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ohta, Tokuya. „Color Ink Jet Printing.“ JAPAN TAPPI JOURNAL 47, Nr. 10 (1993): 1201–6. http://dx.doi.org/10.2524/jtappij.47.1201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wallace, D. B. „Automated Electronic Circuit Manufacturing Using Ink-Jet Technology“. Journal of Electronic Packaging 111, Nr. 2 (01.06.1989): 108–11. http://dx.doi.org/10.1115/1.3226514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The feasibility of using ink-jet technology to write circuits on PC board material and TAB substrate has been demonstrated. Several systems were evaluated and the most successful system used paraffin as a resist material on a copper substrate. The copper was etched and the paraffin subsequently removed to form the conductive paths of the circuit. Line widths down to 100μm were achieved, and line widths of 50μm were shown feasible. The generation of the print pattern from a computer file illustrated the potential of coupling a circuit writing system to an electrical CAD system to provide rapid turnaround prototype circuits.
10

Teng, K. F., und R. W. Vest. „Application of ink jet technology on photovoltaic metallization“. IEEE Electron Device Letters 9, Nr. 11 (November 1988): 591–93. http://dx.doi.org/10.1109/55.9286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Ink jet printmaking technology":

1

Ho, King Tong. „The poetics of making a new cross-cultural aesthetics of art making in digital art through the creative integration of Western digital ink jet printmaking technology with Chinese traditional art substrates : this exegesis is submitted to AUT University in partial fulfillment of the degree of Doctor of Philosophy“. Click here to access this resource online, 2007. http://hdl.handle.net/10292/333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McCallum, Donald John. „Tactile maps manufactured using ink-jet technology“. Thesis, Anglia Ruskin University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

凌偉明 und Wai-ming Ling. „Study of ink behaviour when adding color to SLS models using ink-jet technology“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31243393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ling, Wai-ming. „Study of ink behaviour when adding color to SLS models using ink-jet technology /“. Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B24702110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Margolin, Lauren. „Ultrasonic droplet generation jetting technology for additive manufacturing an initial investigation /“. Available online, Georgia Institute of Technology, 2006, 2007. http://etd.gatech.edu/theses/available/etd-10252006-094048/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Denneulin, Aurore. „Inkjet printing of conductive inks for RFID technology : Influence of substrate, ink and process“. Grenoble INPG, 2010. http://www.theses.fr/2010INPG0075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Ce travail examine le potentiel du procédé jet d'encre pour fabriquer des composants électroniques à bas coût. Trois axes de recherche sont explorés: (i) supports, (H) encres conductrices, et (iii) procédé. Les propriétés de surface du support comme la rugosité ou l'énergie de surface apparaissent comme des paramètres fondamentaux influençant la conductivité des pistes imprimées. Une pré-couche pour adapter les supports papiers avec l'électronique imprimée a donc été proposée. Des traitements alternatifs de frittage des encres nanométalliques ont été testés et de nouvelles encres conductrices à base de nanotubes de carbone (NTC) et de pOlymères conducteurs ont été formulées. Ces encres à base de NTC ont été étudiées plus en détail par l'analyse de l'influence du procédé d'impression et son impact sur les performances et l'organisation du réseau de NTCs. Cette étude donne de nouvelles possibilités pour l'électronique imprimée et ouvre la route à de nouvelles applications bas coût
This work investigates the inkjet printing process to print conductive patterns for producing low cost electronic components. Three fields were explored: (i) substrates, (ii) conductive inks, and (iii) process. Substrate surface properties su ch as roughness or surface energy have a significant impact on conductivity of printed tracks. An innovative solution to make any paper suitable for printed electronics has then been proposed. Infrared and electrical treatments were tested as potential sintering alternatives of nanometallic inks, and new conductive inks based on carbon nanotubes (CNT) and conductive polymers were formulated. This new CNT-based ink has been studied more in details by analyzing influence of inkjet printing parameters and their impact on the CNT network organization and on the conductivity. This study represents an important step in the field of printing electronics, and also opens windows to new low cost applications such as smart packaging or flexible electronics
7

Margolin, Lauren. „Ultrasonic Droplet Generation Jetting Technology for Additive Manufacturing: An Initial Investigation“. Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Additive manufacturing processes, which utilize selective deposition of material rather than traditional subtractive methods, are very promising due to their ability to build complex, highly specific geometries in short periods of time. Three-dimensional direct inkjet printing is a relatively new additive process that promises to be more efficient, scalable, and financially feasible than others. Due to its novelty, however, numerous technical challenges remain to be overcome before it can attain widespread use. This thesis identifies those challenges and finds that material limitations are the most critical at this point. In the case of deposition of high viscosity polymers, for example, it is found that droplet formation is a limiting factor. Acoustic resonance jetting, a technology recently developed at Georgia Institute of Technology, may have the potential to address this limitation because it generates droplets using a physical mechanism different from those currently in use. This process focuses ultrasonic waves using cavity resonances to form a standing wave with high pressure gradients near the orifice of the nozzle, thereby ejecting droplets periodically. This thesis reports initial exploratory testing of this technologys performance with various material and process parameters. In addition, analytical and numerical analyses of the physical phenomena are presented. Results show that, while the pressures generated by the system are significant, energy losses due to viscous friction within the nozzle may prove to be prohibitive. This thesis identifies and begins evaluation of many of the process variables, providing a strong basis for continued investigation of this technology.
8

Dimitrov, D., K. Schreve und Beer N. De. „Advances in Three Dimensional Printing - state of the art and future perspectives“. Journal for New Generation Sciences, Vol 4, Issue 1: Central University of Technology, Free State, Bloemfontein, 2006. http://hdl.handle.net/11462/486.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Published Article
This paper surveys the current state and capabilities of Three Dimensional Printing (3DP). Based on its technical background - the ink jet printing as known from the printer and plotter industry - a classification structure has been developed and proposed. Different printing techniques and process concepts, together with their advantages and limitations are described and analysed. A large variety of manufacturing applications such as rapid pattern making and rapid tooling using the 3DP process directly or as core technology, as well as further implications in design and engineering analysis, medicine, and architecture are presented and evaluated. Some research issues are also discussed. An attempt, based on the state of the art, to show weaknesses and opportunities, and to draw conclusions about the future of this important process wraps up this paper.
9

Gawande, Sailee Sanjay. „Effect of flexible substrate surface modification on inkjet printed colloidal drop evaporation and deposition“. Diss., Online access via UMI:, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009.
Includes bibliographical references.
10

Raja, Sandeep. „The systematic development of Direct Write (DW) technology for the fabrication of printed antennas for the aerospace and defence industry“. Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14930.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Low profile, conformal antennas have considerable advantages for Aerospace and Military platforms where conventional antenna system add weight and drag. Direct Write (DW) technology has been earmarked as a potential method for fabricating low profile antennas directly onto structural components. This thesis determines the key design rules and requirements for DW fabrication of planar antennas. From this, three key areas were investigated: the characterisation of DW ink materials for functionality and durability in harsh environments, localised processing of DW inks and the optimisation of DW conductive ink material properties for antenna fabrication. This study mainly focused on established DW technologies such as micro-nozzle and inkjet printing due to their ability to print on conformal surfaces. From initial characterisation studies it was found that silver based micro-nozzle PTF inks had greater adhesion then silver nano-particle inkjet inks but had lower conductivity (2% bulk conductivity of silver as opposed to 8% bulk conductivity). At higher curing temperatures (>300??C) inkjet inks were able to achieve conductivities of 33% bulk conductivity of silver. However, these temperatures were not suitable for processing on temperature sensitive surfaces such as carbon fibre. Durability tests showed that silver PTF inks were able to withstand standard aerospace environments apart from Skydrol immersion. It was found that DW inks should achieve a minimum conductivity of 30% bulk silver to reduce antenna and transmission line losses. Using a localised electroplating process (known as brush plating) it was shown that a copper layer could be deposited onto silver inkjet inks and thermoplastic PTF inks with a copper layer exhibiting a bulk conductivity of 66% bulk copper and 57% bulk copper respectively. This was an improvement on previous electroless plating techniques which reported bulk copper conductivities of 50% whilst also enabling DW inks to be plated without the need for a chemical bath. One of the limitations of many DW ink materials is they require curing or sintering before they become functional. Conventional heat treatment is performed using an oven which is not suitable when processing DW materials onto large structural component. Previous literature has investigated laser curing as means of overcoming this problem. However, lasers are monochromatic and can therefore be inefficient when curing materials that have absorption bands that differ from the laser wavelength. To investigate this, a laser diode system was compared to a broadband spot curing system. In the curing trials it was found that silver inks could be cured with much lower energy density (by a factor of 10) using the broadband white light source. Spectroscopy also revealed that broadband curing could be more advantageous when curing DW dielectric ink materials as these inks absorb at multiple wavelengths but have low heat conductivity. Themodynamical modelling of the curing process with the broadband heat source was also performed. Using this model it was shown that the parameters required to cure the ink with the broadband heat source only caused heat penetration by a few hundred micro-metres into the top surface of the substrate at very short exposure times (~1s). This suggested that this curing method could be used to process the DW inks on temperature sensitive materials without causing any significant damage. Using a combination of the developments made in this thesis the RF properties of the DW inks were measured after broadband curing and copper plating. It was found that the copper plated DW ink tracks gave an equivalent transmission line loss to a copper etched line. To test this further a number of GPS patch antennas were fabricated out of the DW ink materials. Again the copper plated antenna gave similar properties to the copper etched antenna. To demonstrate the printing capabilities of the micro-nozzle system a mock wireless telecommunications antenna was fabricated on to a GRP UAV wing. In this demonstrator a dielectric and conductive antenna pattern was fabricated on to the leading edge of the wing component using a combination of convection curing and laser curing (using an 808nm diode laser).

Bücher zum Thema "Ink jet printmaking technology":

1

Romano, Frank J. Inkjet!: History, technology, markets, and applications. Pittsburgh: Digital printing Council, PIA/GATFPress, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jürgens, Martin C. Preservation of ink jet hardcopies: An investigation for the Capstone project, cross-disciplinary studies at Rochester Institute of Technology, Rochester, NY. [Rochester, N.Y: Rochester Institute of Technology], 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Suganuma, Katsuaki. Kinzoku nano ryūshi inku no haisen gijutsu: Inkujetto gijutsu o chūshin ni = Wiring technology of metallic nano particle ink : ink-jet technology. 8. Aufl. Tōkyō: Shī Emu Shī Shuppan, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lhotka, Bonny Pierce. Digital alchemy: Printmaking techniques for fine art, photography, and mixed media. Berkeley, CA: New Riders, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Griepentrog, Linda Turner. Print your own fabric: Create unique designs using an inkjet printer. Iola, Wis: KP, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rezanaka, I. Recent Progress in Ink Jet Technology. Society for Imaging Science, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

1935-, Takahashi Yasusuke, Hrsg. Inkujetto gijutsu to zairyō =: Technology of inkjet and materials. 8. Aufl. Tōkyō: CMC Shuppan, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Direct Inkjet Printing On Fabric. Bloomsbury Publishing PLC, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Martin, Graham, und Ian M. Hutchings. Inkjet technology for digital fabrication. 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Martin, Graham D., und Ian M. Hutchings. Inkjet Technology for Digital Fabrication. Wiley & Sons, Incorporated, John, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Ink jet printmaking technology":

1

Kazlauciunas, Algy. „Dye, Ink-Jet“. In Encyclopedia of Color Science and Technology, 591–97. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8071-7_162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kazlauciunas, Algy. „Dye, Ink-jet“. In Encyclopedia of Color Science and Technology, 1–7. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-3-642-27851-8_162-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gregory, Peter. „Ink-Jet Printing“. In High-Technology Applications of Organic Colorants, 175–205. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3822-6_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kenyon, R. W. „Ink jet printing“. In Chemistry and Technology of Printing and Imaging Systems, 113–38. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0601-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ding, Yi, und Lisa Chapman. „Coloration, Ink-Jet Printing“. In Encyclopedia of Color Science and Technology, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27851-8_442-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Oliver, J. F. „Ink/Paper Interactions in Ink Jet Printing (lJP)“. In Surface and Colloid Science in Computer Technology, 409–28. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1905-4_27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lejeune, M., Thierry Chartier, C. Dossou-Yovo und R. Noguera. „Ink-Jet Printing of Ceramic Micro-Pillar Arrays“. In Advances in Science and Technology, 413–20. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Wan, Xing Feng, Yuanyuan Zhu und Xianfu Wei. „Study on the Stability and Color Property of Fluorescent Ink-jet Ink“. In Advanced Graphic Communications, Packaging Technology and Materials, 919–25. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0072-0_113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liang, Lijuan, Zhenzhen Chen, Hui Hao, Keyang Hu und Xianfu Wei. „Fabrication and Performance of Water-Based Near-Infrared Absorption Ink-Jet Ink“. In Advanced Graphic Communications, Packaging Technology and Materials, 927–33. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0072-0_114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Yiran, Xianfu Wei, Peiqing Huang und Hao Zhang. „Effect of Prepolymer on the Performance of UV-LED Ink-jet Ink“. In Advanced Graphic Communications, Packaging Technology and Materials, 991–1000. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0072-0_122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Ink jet printmaking technology":

1

Sargeant, Steven J., Sen Yang, Miaoling Huang, David Atherton und Kang Sun. „Design of ink-jet films“. In IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, herausgegeben von Jan Bares. SPIE, 1995. http://dx.doi.org/10.1117/12.207570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rezanka, Ivan. „Thermal ink jet: a review“. In SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, herausgegeben von Jan Bares. SPIE, 1992. http://dx.doi.org/10.1117/12.59686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Torpey, Peter A. „Image processing for ink jet“. In SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, herausgegeben von Jan Bares. SPIE, 1992. http://dx.doi.org/10.1117/12.59708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lee, Francis C. „Overview of Thermal Ink Jet Technology“. In OE/LASE '89, herausgegeben von Leo Beiser, Stephen L. Corsover, John M. Fleischer, Vsevolod S. Mihajlov und Ken-Ichi Shimazu. SPIE, 1989. http://dx.doi.org/10.1117/12.952819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pond, Stephen F., und Robert S. Karz. „Whither ink jet? Current patent trends“. In IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, herausgegeben von Jan Bares. SPIE, 1995. http://dx.doi.org/10.1117/12.207578.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Walsh, Gareth. „Medical Device Coating Using Ink-Jet Technology“. In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72515.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Labcoat has incorporated Ink-Jet technology into its JAC System™ to target the location and quantity of coating applied to a medical device and more particularly in the case of a stent implant to apply a low dose of drug and carrier to the desired surfaces only of the device.
7

Verdonckt-Vandebroek, Sophie. „Micromachining technology for thermal ink-jet products“. In Micromachining and Microfabrication, herausgegeben von Kevin H. Chau und Patrick J. French. SPIE, 1997. http://dx.doi.org/10.1117/12.284514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kisic, Milica, Nelu Blaz, Cedo Zlebic, Ljiljana Zivanov und Ivana Nikolic. „Fully ink-jet printed capacitive pressure sensor“. In 2017 40th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2017. http://dx.doi.org/10.1109/isse.2017.8000994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Daligault, Laurence, und Philippe Archinard. „Predictive model for color ink-jet printing“. In IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, herausgegeben von Jan Bares. SPIE, 1993. http://dx.doi.org/10.1117/12.146255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hermanson, Herman A., und Robert V. Lorenze. „Testing unpackaged thermal ink-jet printing devices“. In IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, herausgegeben von Jan Bares. SPIE, 1993. http://dx.doi.org/10.1117/12.146257.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie