Auswahl der wissenschaftlichen Literatur zum Thema „Injection molding simulation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Injection molding simulation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Injection molding simulation"

1

NAKANO, Ryo. „Injection Molding Simulation“. Journal of the Japan Society for Technology of Plasticity 47, Nr. 543 (2006): 273–78. http://dx.doi.org/10.9773/sosei.47.273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

NAKANO, Ryo. „Injection Molding CAE Simulation“. Journal of the Japan Society for Technology of Plasticity 50, Nr. 579 (2009): 296–300. http://dx.doi.org/10.9773/sosei.50.296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Goto, Terumasa. „Simulation of Injection Molding“. Seikei-Kakou 2, Nr. 1 (1990): 45–51. http://dx.doi.org/10.4325/seikeikakou.2.45.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wei, Xiao Hua, und Bai Yang Lou. „Numerical Simulation Research of Micro-Injection Molding Simulation“. Applied Mechanics and Materials 55-57 (Mai 2011): 1511–17. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.1511.

Der volle Inhalt der Quelle
Annotation:
According to the basic theory and process of conventional injection molding, using the CAE software, numerical simulation research of the injection molding characteristic for micro thin-wall plastic parts are put forward. The effects of process parameters (melt temperature, mold temperature, injection pressure, injection rate) on molding characteristic of micro thin-wall plastic parts are discussed by single factor method, compare the significance of each factors.The simulation results showed that volume could be improved with the increase of melt temperature ,molding temperature, injection pressure and injection rate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hourng, Lih-Wu, und Yau Si Lin. „Numerical Simulation of Debinding Process in Metal Injection Molding“. International Journal of Modeling and Optimization 4, Nr. 6 (Dezember 2014): 421–25. http://dx.doi.org/10.7763/ijmo.2014.v4.411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MIZUKAMI, AKIRA. „Injection molding polymeric flow simulation.“ NIPPON GOMU KYOKAISHI 63, Nr. 12 (1990): 727–30. http://dx.doi.org/10.2324/gomu.63.727.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Satin, Lukáš, und Jozef Bílik. „Verification CAE System for Plastic Injection“. Applied Mechanics and Materials 834 (April 2016): 79–83. http://dx.doi.org/10.4028/www.scientific.net/amm.834.79.

Der volle Inhalt der Quelle
Annotation:
This article is focused on the field of computer simulation and it is subsequent verification in practice. The work highlights the injection process, the simulation software that is specialized in injection molding and the technology process of injection itself. The major subject of the thesis is the use of the computer aided injection molding technology by using the CAE systems. The experimental part of the thesis deals with the production of the 3D model specific plastic parts in two modifications, injection molding simulation in the system Moldex3D and digitization of moldings on the optical 3D scanner. In the thesis we also provide measuring realization on digitized models and comparison of the parts size with the computer model. In conclusion we summarize the results achieved from the comparison. The thesis is carried out in cooperation with the Simulpast s.r.o.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Miao, Li Lei, Peng Cheng Xie, Pan Pan Zhang und Wei Min Yang. „Numerical Simulation of Differential Injection Molding Based on Moldex 3D“. Key Engineering Materials 501 (Januar 2012): 225–30. http://dx.doi.org/10.4028/www.scientific.net/kem.501.225.

Der volle Inhalt der Quelle
Annotation:
Differential injection molding is one of the key technologies for micro-manufacture. The mechanism of melt pump based on the differential injection molding is presented. The differential injection molding system is added into the traditional injection machines. Melt is plasticized by the plastication system, then after being split, pressurized and measured by the differential system, it enters the cavity to realize the function of multiple micro injection molding machines. Moldex 3D software is used to simulate the filling history of the micro-structure via differential injection molding technology. The product's filling volume under different processing parameters is compared, which provides theoretical basis for the optimization of the molding parameters in differential injection molding technology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zink, Béla, Ferenc Szabó, István Hatos, András Suplicz, Norbert Kovács, Hajnalka Hargitai, Tamás Tábi und József Kovács. „Enhanced Injection Molding Simulation of Advanced Injection Molds“. Polymers 9, Nr. 12 (22.02.2017): 77. http://dx.doi.org/10.3390/polym9020077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Matsuoka, Takaaki. „Computer Simulation in Thermoplastic Injection Molding“. Nihon Reoroji Gakkaishi(Journal of the Society of Rheology, Japan) 23, Nr. 4 (1995): 207–16. http://dx.doi.org/10.1678/rheology1973.23.4_207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Injection molding simulation"

1

Srithep, Yottha. „A study on material distribution, mechanical properties, and numerical simulation in co-injection molding“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1204150909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kim, Nam Hyung. „INJECTION-COMPRESSION AND CO-INJECTION MOLDINGS OF AMORPHOUS POLYMERS: VISCOELASTIC SIMULATION AND EXPERIMENT“. Akron, OH : University of Akron, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1230065091.

Der volle Inhalt der Quelle
Annotation:
Dissertation (Ph. D.)--University of Akron, Dept. of Polymer Engineering, 2009.
"May, 2009." Title from electronic dissertation title page (viewed 11/27/2009) Advisor, Avraam I. Isayev; Committee members, James L. White, Erol Sancaktar, Kevin Kreider, Minel J. Braun; Department Chair, Sadhan C. Jana; Dean of the College, Stephen Cheng; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tran, Ngoc Tu. „Creating material properties for thermoset injection molding simulation process“. Universitätsverlag Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A38380.

Der volle Inhalt der Quelle
Annotation:
Um den Spritzgießprozess zu simulieren, sind korrekte Materialdaten nötig. Diese Daten umfassen Viskositätsmodelle, Wärmekapazitätskoeffizienten, Wärmeleitfähigkeitskoeffizienten, PVT-Modelle und bei reaktiven Materialien Härtungsmodelle. Bei der Spritzgießsimulation von Thermoplasten sind die Materialdaten in der Regel in den Simulationstools verfügbar. Der Anwender kann problemlos Thermoplastmaterialdaten auswählen, die bereits in die Materialdatenbank der Simulationswerkzeuge eingebettet waren, um die gesamten Phasen des Thermoplastspritzgießprozesses zu simulieren. Bei der Duroplastspritzgießsimulation sind nur begrenzt Materialdaten vorhanden und selten aus der Datenbank der Simulationswerkzeuge verfügbar, da sie nicht nur bei der Messung rheologischer und thermischer Eigenschaften, sondern auch bei der Modellierung rheologischer und kinetischer mathematischer Modelle kompliziert sind. Daher ist es notwendig, eigene Materialdaten zu generieren. Um dieses Problem zu lösen, bedarf es einer umfangreichen Wissensbasis bei der Messung von Materialeigenschaften sowie der Erstellung eines Optimierungsalgorithmus´. Um den Prozess des duroplastischen Spritzgießens exakt zu simulieren, bedarf es zudem fundierter Kenntnisse über die Formfüllungseigenschaften dieser Materialien. Die Untersuchung des Fließverhaltens von duroplastischen Spritzgießmassen im Inneren der Kavität ist jedoch nicht ausreichend beschrieben. Bisher gab es noch keine veröffentlichten Hinweise, die zeigen, wie man aus experimentellen Messdaten (thermische und rheologische Daten) für den reaktiven Spritzgießsimulationsprozess komplette Materialdaten für Duroplaste erzeugen kann. Diese Probleme führen zu einer Abhängigkeit der Anwender von der Materialdatenbank der Simulationssoftware, was zu einer Einschränkung der Anwendung der Computersimulation in der duroplastischen Spritzgießsimulation und dem Vergleich zwischen experimentellen und Simulationsergebnissen führt. Darüber hinaus stellt sich die Frage, ob es beim Füllen der Kavität ein Wandgleiten zwischen Duroplastschmelze und Wandoberfläche gibt oder nicht. Aus diesem Grund wird die Wirkung des Wandgleitens auf die Kavitätenoberfläche bei der Simulation des duroplastischen Spritzgießens immer noch vernachlässigt. Die vorliegende Arbeit konzentriert sich auf drei wichtige wissenschaftliche Ziele. Das erste ist die Innovation eines neuen technischen Verfahrens zur physikalischen Erklärung des Formfüllverhaltens von duroplastischen Spritzgießmassen. Das zweite Hauptziel ist die Entwicklung einer numerischen Methode zur Erstellung eines duroplastischen Materialdatenblattes zur Simulation der Formfüllung von duroplastischen Spritzgießmassen. Schließlich wird die Erstellung von Simulationswerkzeugen auf der Grundlage der physikalischen Gegebenheiten und des erzeugten Materialdatenblattes durchgeführt.
To simulate the injection molding process, it is necessary to set material data. The material data for an injection molding process must include a viscosity model and its fitted coefficients, heat capacity coefficients, thermal conductivity coefficients, a PVT model and its coefficients, a curing model and its coefficients (only for reactive injection molding). With thermoplastics injection molding simulation, the material data is generally available from simulation tools. Users could easily choose thermoplastics material data that was already embedded in the material data bank of simulation tools to simulate the entire phases of thermoplastics injection molding process. However, with thermosets injection molding simulation, the material data is found in limited sources and seldom available from data bank of simulation tools because of complication not only in rheological and thermal properties measurement but also in modeling rheological and cure kinetics mathematical models. Therefore, with thermoset injection molding compounds that its material data bank has not been found in data bank of simulation tools, before setting material data, it is necessary to create its own material data that simulation packages do not supply a tool. Therefore, to solve this problem, it requires an extensive knowledge base in measurements of material properties as well as optimization algorithm. In addition, to simulate exactly the thermosets injection molding compound process, it requires a profound knowledge in the mold filling characteristics of thermoset injection molding compounds. However, investigation of flow behavior of thermosets injection molding compounds inside the mold has not been adequately described. Up to now, there has not been any article that shows a complete way to create thermoset material data from measured experimental data (thermal data and rheological data) for the reactive injection molding simulation process. These problems are leading to the users ‘dependency on the material data bank of simulation tools, leading to restriction in application of computer simulation in the thermoset injection molding simulation and comparison between experimental and simulation results. Furthermore, there is still a big question related to whether there is or no slip phenomenon between thermosets melt and the wall surface during filling the cavity, for which has not yet been found an exact answer. Because of this the effect of wall slip on the cavity surface is still ignored during thermoset injection molding simulation process. This thesis focused on three key scientific goals. The first one is innovation of a new technical method to explain the mold filling behavior of thermoset injection molding compounds physically. The second key goal is developing numerical method to create thermoset material data sheet for simulation of mold filling characterizations of thermoset injection molding compounds. Finally, creating a simulation tool base on the physical technique and generated material data sheet.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shi, Jianjun. „Experiment and simulation of micro injection molding and microwave sintering“. Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2064/document.

Der volle Inhalt der Quelle
Annotation:
Procédé de moulage par injection de poudres est constitué de quatre étapes principales: la préparation des matières premières, moulage par injection, le déliantage et le frittage. Cette thèse présente les recherches sur deux aspects principaux: la micro-injection et frittage par micro -ondes. Les contributions principaux peuvent être conclues dans les quatre aspects suivants: Modification et complément de l'algorithme précédent pour la simulation du procédé de moulage par injection; L'évaluation et la mise en œuvre de l'effet de tension de surface en simulation pour micro-injection; Micro-ondes expériences de frittage de compacts basés sur l'acier inoxydable 17-4PH; Réalisation de la simulation de frittage à micro-ondes avec couplage de la multi-physique, y compris le chauffage à micro-ondes classique, le transfert de chaleur, et le supplément de modèle pour la densification de frittage de la poudre compacté
Powder Injection molding process consists off our main stages: feedstock preparation, injection molding, debinding and sintering. The thesis presents the research on two main aspects: micro injectionmolding and microwave sintering. The main contributions can be concluded in thefollowing four aspects: Modification and supplement of previous algorithm for the simulation ofinjection molding process; Evaluation and implementation of surface tension effect in simulation for micro injection; Microwave sintering experiments of compacts based on 17-4PH stainles ssteel; Realization of the microwave sintering simulation with the coupling of multi-physics,including the classic microwave heating, heat transfer, and the supplement of model for sintering densification of powder impacts
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gydemo, Jessica. „Simulation of injection molded fiber reinforced polymers“. Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Riddles, Mornay. „Prediction of shrinkage and warpage in injection moulded components using computational analysis“. Thesis, Peninsula Technikon, 2003. http://hdl.handle.net/20.500.11838/1265.

Der volle Inhalt der Quelle
Annotation:
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, 2003
Injection moulding is a process by which molten polymer is forced into an empty cavity of the desired shape. At its melting point, polymers undergo a volumetric expansion when heated, and volumetric contraction when cooled. This volumetric contraction is called shrinkage. Once the mould cavity is filled, more pressure is applied and additional polymer is packed into the cavity and held to compensate for the anticipated shrinkage as the polymer solidifies. The cooling takes place via the cooling channels where the polymer is cooled until a specific ejection criterion is met. Heat from the polymer is lost to the surrounding mould, a part of this heat reaches the cooling channel surfaces, which in turn exchange heat with the circulating cooling fluid. Due to the complexity of injection moulded parts and the cooling channel layout, it is difficult to achieve balanced cooling of parts. Asymmetric mould temperature distribution causes contractions of• the polymer as it cools from its melting temperature to room temperature. This results in residual stresses, which causes the part to warp after ejection. Given the understanding of the mathematical model describing the heat transfer process during the cooling stage, the objectives of this study were three fold. Firstly, an alternative numerical model for the heat transfer process was developed. The proposed model was used to investigate the cooling stress build-up during the injection moulding process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jüttner, Gabor, Tham Nguyen-Chung, Günter Mennig und Michael Gehde. „Simulation of the Filling Process in Micro-Injection Moulding“. Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200801189.

Der volle Inhalt der Quelle
Annotation:
Nowadays, the filling and solidification of macro-scale injection mouldings can be predicted using commercial CAE software. For micro-injection moulding, the conventional tools do not work for all process conditions. The reasons might be the lack of high quality database used in the simulation and the improperly specified boundary conditions which do not reflect the real state in the cavity. Special aspects like surface tension or "size dependent" viscosity might also be responsible for the inaccuracy of the simulations. In this paper, those aspects related to the boundary conditions were taken into consideration, especially the thermal contact behaviour and the melt compression in the barrel which affects not only the temperature of the melt due to the compression heating, but also reduces the actual volume rate in the cavity. It can be shown that the heat transfer coefficient between the melt and the mould wall has a significant influence on the simulation results. In combination with precise material data and considering the reduction of the volume rate due to the melt compression in the barrel, the heat transfer coefficient may be quantified by means of reverse engineering. In general, it decreases when either the cavity thickness or the injection speed increases. It is believed that a pressure dependent model for the heat transfer coefficient would be more suitable to describe the thermal contact behaviour in micro injection moulding. The melt compression in the barrel affects definitely the filling behaviour and subsequently the heat transfer in the cavity as well, which is especially true for micro parts of high aspect ratio.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kong, Xiangji. „Development and characterization of polymer- metallic powder feedstocks for micro-injection molding“. Phd thesis, Université de Franche-Comté, 2011. http://tel.archives-ouvertes.fr/tel-00844736.

Der volle Inhalt der Quelle
Annotation:
Micro-Powder Injection Moulding (Micro-PIM) technology is one of the key technologies that permit to fit with the increasing demands for smaller parts associated to miniaturization and functionalization in different application fields. The thesis focuses first on the elaboration and characterization of polymer-powder mixtures based on 316L stainless steel powders, and then on the identification of physical and material parameters related to the sintering stage and to the numerical simulations of the sintering process. Mixtures formulation with new binder systems based on different polymeric components have been developed for 316L stainless steel powders (5 µm and 16 µm). The characterization of the resulting mixtures for each group is carried out using mixing torque tests and viscosity tests. The mixture associated to the formulation comprising polypropylene + paraffin wax + stearic acid is well adapted for both powders and has been retained in the subsequent tests, due to the low value of the mixing torque and shear viscosity. The critical powder volume loading with 316L stainless steel powder (5 µm) according to the retained formulation has been established to 68% using four different methods. Micro mono-material injection (with 316L stainless steel mélange) and bi-material injection (with 316L stainless steel mélange and Cu mélange) are properly investigated. Homogeneity tests are observed for mixtures before and after injection. A physical model well suited for sintering stage is proposed for the simulation of sintering stage. The identification of physical parameters associated to proposed model are defined from the sintering stages in considering 316L stainless steel (5 µm)mixtures with various powder volume loadings (62%, 64% and 66%). Beam-bending tests and free sintering tests and thermo-Mechanical-Analyses (TMA) have also investigated. Three sintering stages corresponding to heating rates at 5 °C/min, 10 °C/min and 15 °C/min are used during both beam-bending tests and free sintering tests. On basis of the results obtained from dilatometry measurements, the shear viscosity module G, the bulk viscosity module K and the sintering stress σs are identified using Matlab® software. Afterwards, the sintering model is implemented in the Abaqus® finite element code, and appropriate finite elements have been used for the support and micro-specimens, respectively. The physical material parameters resulting from the identification experiments are used to establish the proper 316L stainless steel mixture, in combination with G, K and σs parameters. Finally, the sintering stages up to 1200 °C with three heating rates (5 °C/min, 10 °C/min and 15 °C/min) are also simulated corresponding to the four micro-specimen types (powder volume loading of 62%, 64% and 66%). The simulated shrinkages and relative densities of the sintered micro-specimens are compared to the experimental results indicating a proper agreement
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hernández, Aguilar José Ramón. „Computational and experimental evaluation of two models for the simulation of thermoplastics injection molding“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ64224.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Carrillo, Antonio J. „Residual Stresses and Birefringence in Gas-assisted Injection Molding of Amorphous Polymers: Simulation and Experiment“. University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1214313599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Injection molding simulation"

1

Beaumont, John P. Successful injection molding: Process, design, and simulation. Munich: Hanser, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Huamin. Computer modeling for injection molding: Simulation, optimization, and control. Hoboken, N.J: Wiley, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yangfu, Jin, Hrsg. Su liao zhu she zhi pin que xian yu CAE fen xi: Suliao zhushe zhipin quexian yu CAE fenxi. Beijing Shi: Hua xue gong ye chu ban she, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Joule, J. A. Heterocyclic chemistry at a glance. 2. Aufl. Chichester, West Sussex: John Wiley & Sons, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Successful Injection Molding: Process, Design, and Simulation. Hanser Gardner Publications, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhou, Huamin. Computer Modeling for Injection Molding: Simulation, Optimization, and Control. Wiley & Sons, Incorporated, John, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhou, Huamin. Computer Modeling for Injection Molding: Simulation, Optimization, and Control. Wiley & Sons, Incorporated, John, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhou, Huamin. Computer Modeling for Injection Molding: Simulation, Optimization, and Control. Wiley & Sons, Incorporated, John, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Injection molding simulation"

1

Kennedy, Peter. „Development of Injection Molding Simulation“. In Injection Molding, 553–98. München: Carl Hanser Verlag GmbH & Co. KG, 2009. http://dx.doi.org/10.3139/9783446433731.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Silva, Luisa, Jean-Francois Agassant und Thierry Coupez. „Three-Dimensional Injection Molding Simulation“. In Injection Molding, 599–651. München: Carl Hanser Verlag GmbH & Co. KG, 2009. http://dx.doi.org/10.3139/9783446433731.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hétu, Jean-François, und Florin Ilinca. „Three-Dimensional Simulation of Gas-Assisted and Co-Injection Molding Processes“. In Injection Molding, 809–50. München: Carl Hanser Verlag GmbH & Co. KG, 2009. http://dx.doi.org/10.3139/9783446433731.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Maw-Ling, Rong-Yeu Chang und Chia-Hsiang (David) Hsu. „Foam Injection Molding“. In Molding Simulation: Theory and Practice, 401–24. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906200.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Maw-Ling, Rong-Yeu Chang und Chia-Hsiang (David) Hsu. „Powder Injection Molding“. In Molding Simulation: Theory and Practice, 425–40. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906200.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tosello, Guido, und David Maximilian Marhöfer. „Modeling and Simulation of Micro Injection Molding“. In Micro Injection Molding, 213–40. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906545.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Maw-Ling, Rong-Yeu Chang und Chia-Hsiang (David) Hsu. „Co-/Bi-Injection Molding“. In Molding Simulation: Theory and Practice, 357–76. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906200.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Yun, und Huamin Zhou. „Cooling Simulation“. In Computer Modeling for Injection Molding, 129–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118444887.ch5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhou, Huamin, Fen Liu und Peng Zhao. „Microstructure and Morphology Simulation“. In Computer Modeling for Injection Molding, 195–236. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118444887.ch7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Maw-Ling, Rong-Yeu Chang und Chia-Hsiang (David) Hsu. „Gas-/Water-Assisted Injection Molding“. In Molding Simulation: Theory and Practice, 377–400. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906200.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Injection molding simulation"

1

Drummer, D., und S. Messingschlager. „Ceramic injection molding material analysis, modeling and injection molding simulation“. In PROCEEDINGS OF PPS-29: The 29th International Conference of the Polymer Processing Society - Conference Papers. American Institute of Physics, 2014. http://dx.doi.org/10.1063/1.4873848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Villarreal, Maria G., Rachmat Mulyana, Jose M. Castro und Mauricio Cabrera-Rios. „Simulation optimization applied to injection molding“. In 2008 Winter Simulation Conference (WSC). IEEE, 2008. http://dx.doi.org/10.1109/wsc.2008.4736294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Vlcek, Jiri, Luke Miller, C. T. Huang und Martin Zatloukal. „Simulation of Screws for Injection Molding“. In NOVEL TRENDS IN RHEOLOGY III: Proceedings of the International Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3203278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fruth, Sebastian, Stefan Kruppa und Reinhard Schiffers. „Condition monitoring for injection molding screws“. In FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0028341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Yen-Chih, Chih-Chung Hsu und Chia-Hsiang Hsu. „Numerical simulation for predicting sink marks on injection molding and injection compression molding process“. In PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35). AIP Publishing, 2020. http://dx.doi.org/10.1063/1.5142929.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, X., Y. C. Lam, K. C. Tam und S. C. M. Yu. „MOLD-FILLING SIMULATION FOR POWDER INJECTION MOLDING“. In Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Villarreal-Marroquin, Maria G., Mauricio Cabrera-Rios und Jose M. Castro. „A multicriteria simulation optimization method for injection molding“. In 2011 Winter Simulation Conference - (WSC 2011). IEEE, 2011. http://dx.doi.org/10.1109/wsc.2011.6147949.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Qiang, Jie Ouyang, Xuejuan Li und Binxin Yang. „3D Numerical Simulation of Gas-assisted Injection Molding“. In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Samanta, S. K., H. Chattopadhyay, M. M. Godkhindi, B. Pustal, R. Berger und A. Buhrig-Polaczek. „SIMULATION OF MOLD FILLING IN POWDER INJECTION MOLDING“. In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p11.20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yu, Liyong. „Experiments and Simulation of Injection Molding with Microstructures“. In MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie