Zeitschriftenartikel zum Thema „Inhomogeneous materials“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Inhomogeneous materials.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Inhomogeneous materials" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Grimvall, G., und M. S�derberg. „Transport in macroscopically inhomogeneous materials“. International Journal of Thermophysics 7, Nr. 1 (Januar 1986): 207–11. http://dx.doi.org/10.1007/bf00503811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Klemens, P. G. „Thermal conductivity of inhomogeneous materials“. International Journal of Thermophysics 10, Nr. 6 (November 1989): 1213–19. http://dx.doi.org/10.1007/bf00500572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nan, Ce-Wen. „Physics of inhomogeneous inorganic materials“. Progress in Materials Science 37, Nr. 1 (Januar 1993): 1–116. http://dx.doi.org/10.1016/0079-6425(93)90004-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pasternak, Viktoriya, Lyudmila Samchuk, Artem Ruban, Oleksandr Chernenko und Nataliia Morkovska. „Investigation of the Main Stages in Modeling Spherical Particles of Inhomogeneous Materials“. Materials Science Forum 1068 (19.08.2022): 207–14. http://dx.doi.org/10.4028/p-9jq543.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This scientific study deals with the main issues related to the process of filling inhomogeneous materials into a rectangular hopper. The article develops an algorithm for filling particles of structurally inhomogeneous materials. A micrograph of the structure of samples of inhomogeneous materials is presented. It was found that the structure of samples of heterogeneous materials consists of three layers: external, internal and impurities of various grinding aggregates. Based on microstructural analysis, the presence of particles of various shapes and sizes was justified. On the basis of which the main initial conditions for filling the package with spherical particles were described. The basic physical and mechanical properties of structurally inhomogeneous materials were studied using the obtained results. We also constructed an approximate dependence of porosity on the particle diameter of inhomogeneous materials.
5

Mironov, Vladimir I., Olga A. Lukashuk und Dmitry A. Ogorelkov. „On Durability of Structurally Inhomogeneous Materials“. Materials Science Forum 1031 (Mai 2021): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.
6

Dyakonov, O. M. „Briquetting of structurally inhomogeneous porous materials“. Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, Nr. 2 (07.07.2020): 205–14. http://dx.doi.org/10.29235/1561-8358-2020-65-2-205-214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The work is devoted to solving the axisymmetric problem of the theory of pressing porous bodies with practical application in the form of force calculation of metallurgical processes of briquetting small fractional bulk materials: powder, chip, granulated and other metalworking wastes. For such materials, the shape of the particles (structural elements) is not geometrically correct or generally definable. This was the basis for the decision to be based on the continual model of a porous body. As a result of bringing this model to a two-dimensional spatial model, a closed analytical solution was obtained by the method of jointly solving differential equilibrium equations and the Guber–Mises energy condition of plasticity. The following assumptions were adopted as working hypotheses: the normal radial stress is equal to the tangential one, the lateral pressure coefficient is equal to the relative density of the compact. Due to the fact that the problem is solved in a general form and in a general formulation, the solution itself should be considered as methodological for any axisymmetric loading scheme. The transcendental equations of the deformation compaction of a porous body are obtained both for an ideal pressing process and taking into account contact friction forces. As a result of the development of a method for solving these equations, the formulas for calculating the local characteristics of the stressed state of the pressing, as well as the integral parameters of the pressing process are derived: pressure, stress, and deformation work.
7

Alshits, V. I., und H. O. K. Kirchner. „Cylindrically anisotropic, radially inhomogeneous elastic materials“. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, Nr. 2007 (08.03.2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhou, Q., Z. Bian und A. Shakouri. „Pulsed cooling of inhomogeneous thermoelectric materials“. Journal of Physics D: Applied Physics 40, Nr. 14 (29.06.2007): 4376–81. http://dx.doi.org/10.1088/0022-3727/40/14/037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

HIGUCHI, Masahiro, Kyohei TAKEO, Harunobu NAGINO, Takuya MORIMOTO und Yoshinobu TANIGAWA. „OS0121 Plate Theories of inhomogeneous materials“. Proceedings of the Materials and Mechanics Conference 2009 (2009): 305–7. http://dx.doi.org/10.1299/jsmemm.2009.305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhu, S. B., J. Lee und G. W. Robinson. „Kinetic energy imbalance in inhomogeneous materials“. Chemical Physics Letters 161, Nr. 3 (September 1989): 249–52. http://dx.doi.org/10.1016/s0009-2614(89)87069-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Hoff, Heinrich. „Asymmetrical heat conduction in inhomogeneous materials“. Physica A: Statistical Mechanics and its Applications 131, Nr. 2 (Juni 1985): 449–64. http://dx.doi.org/10.1016/0378-4371(85)90008-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kayuk, Ya F., und M. K. Shekera. „Reduced mechanical characteristics of inhomogeneous materials“. Soviet Applied Mechanics 27, Nr. 5 (Mai 1991): 501–7. http://dx.doi.org/10.1007/bf00887776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Khmelevskaya, V. S., und V. G. Malynkin. „Radiation-induced inhomogeneous state of materials“. Metal Science and Heat Treatment 42, Nr. 8 (August 2000): 331–34. http://dx.doi.org/10.1007/bf02471310.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kumar, Kuldeep, und Rajesh Kumar. „On Inhomogeneous Deformations in ES Materials“. International Journal of Engineering Science 48, Nr. 4 (April 2010): 405–16. http://dx.doi.org/10.1016/j.ijengsci.2009.10.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kharevych, Lily, Patrick Mullen, Houman Owhadi und Mathieu Desbrun. „Numerical coarsening of inhomogeneous elastic materials“. ACM Transactions on Graphics 28, Nr. 3 (27.07.2009): 1–8. http://dx.doi.org/10.1145/1531326.1531357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Svenson, O. M. „Nondestructive testing of highly inhomogeneous materials“. Materials Science 32, Nr. 4 (Juli 1996): 491–504. http://dx.doi.org/10.1007/bf02538978.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Axell, Jörgen, Johan Helsing und Göran Grimvall. „Joule heat distribution in inhomogeneous materials“. Physica A: Statistical Mechanics and its Applications 157, Nr. 1 (Mai 1989): 618. http://dx.doi.org/10.1016/0378-4371(89)90371-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Brice, David K. „Ion implantation distributions in inhomogeneous materials“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 17, Nr. 4 (November 1986): 289–99. http://dx.doi.org/10.1016/0168-583x(86)90114-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Gondzik, J., und H. Stachowiak. „Positron lifetime in inhomogeneous metallic materials“. Crystal Research and Technology 22, Nr. 12 (Dezember 1987): 1511–14. http://dx.doi.org/10.1002/crat.2170221216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Erokhin, Sergey, und Victor Levin. „Inhomogeneous creep equation for viscoelastic materials“. E3S Web of Conferences 410 (2023): 03002. http://dx.doi.org/10.1051/e3sconf/202341003002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The paper consider an inhomogeneous creep equation arising from a generalized Voigt model containing a Riemann-Liouville fractional derivative of the order 0 < β < 1. The Laplace transform is used for the numerical solution. The obtained solutions are compared with experimental data of polymer concrete samples. On the basis of this comparison the conclusion about the adequacy of the numerical solution method is made, and estimates of the model parameters are given.
21

Milton, Graeme W. „Analytic materials“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, Nr. 2195 (November 2016): 20160613. http://dx.doi.org/10.1098/rspa.2016.0613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p . If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p . For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90 ° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
22

Tao, Xiang Hua, Jing Qing Huang und Ying Chun Cai. „Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm“. Applied Mechanics and Materials 438-439 (Oktober 2013): 430–35. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.430.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The key of ground penetrating radars application lies in the calculation of dielectric coefficient. The pavement materials are inhomogeneous medium in fact, the particle surface can induce the scatter and diffraction of electromagnetic wave. The inhomogeneous dielectricity can change the characteristics of reflected wave. It may even cause background noise of reflected signal, which will lead to mistakes in signal interpretation. Therefore it is necessary to analyze the inhomogeneous dielectric coefficients by GPR. This paper proposes the solutions of inverse analysis for inhomogeneous dielectric coefficients of pavement materials used GPR data. Two examples are given to assess the validity of genetic algorithms in inversion of pavement materials inhomogeneous dielectricity. The results show that genetic algorithm can converge into true solutions well. The backcalculated inhomogeneous dielectric coefficients can help to evaluate pavement properties further.
23

Budanov, V. E., N. L. Yevich und N. N. Suslov. „Permittivity Measurement Technique for Inhomogeneous Dielectric Materials“. Telecommunications and Radio Engineering 65, Nr. 15 (2006): 1439–51. http://dx.doi.org/10.1615/telecomradeng.v65.i15.80.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Roganova, N. A., und G. Z. Sharafutdinov. „Identification of mechanical properties of inhomogeneous materials“. Mechanics of Solids 47, Nr. 4 (Juli 2012): 448–53. http://dx.doi.org/10.3103/s0025654412040097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wang, Xu, Dongxing Mao, Wuzhou Yu und Zaixiu Jiang. „Sound barriers from materials of inhomogeneous impedance“. Journal of the Acoustical Society of America 137, Nr. 6 (Juni 2015): 3190–97. http://dx.doi.org/10.1121/1.4921279.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Elmaimouni, L., J. E. Lefebvre, A. Raherison und F. E. Ratolojanahary. „Acoustical Guided Waves in Inhomogeneous Cylindrical Materials“. Ferroelectrics 372, Nr. 1 (14.11.2008): 115–23. http://dx.doi.org/10.1080/00150190802382074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Crocker, John C., M. T. Valentine, Eric R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh und D. A. Weitz. „Two-Point Microrheology of Inhomogeneous Soft Materials“. Physical Review Letters 85, Nr. 4 (24.07.2000): 888–91. http://dx.doi.org/10.1103/physrevlett.85.888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Vislov, I. S., S. N. Kladiev, S. M. Slobodyan und A. M. Bogdan. „A Batch Feeder for Inhomogeneous Bulk Materials“. IOP Conference Series: Materials Science and Engineering 124 (April 2016): 012033. http://dx.doi.org/10.1088/1757-899x/124/1/012033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Haddi, A., und D. Weichert. „Elastic-plastic J-integral in inhomogeneous materials“. Computational Materials Science 8, Nr. 3 (Juli 1997): 251–60. http://dx.doi.org/10.1016/s0927-0256(97)00008-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bernabei, D., F. Ganovelli, N. Pietroni, P. Cignoni, S. Pattanaik und R. Scopigno. „Real-time single scattering inside inhomogeneous materials“. Visual Computer 26, Nr. 6-8 (21.04.2010): 583–93. http://dx.doi.org/10.1007/s00371-010-0449-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Scibetta, M. „Master Curve analysis of potentially inhomogeneous materials“. Engineering Fracture Mechanics 94 (November 2012): 56–70. http://dx.doi.org/10.1016/j.engfracmech.2012.07.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kichigin, A. F., A. E. Kolosov, V. V. Klyavlin und V. G. Sidyachenko. „Probabilistic-geometric model of structurally inhomogeneous materials“. Soviet Mining Science 24, Nr. 2 (März 1988): 87–94. http://dx.doi.org/10.1007/bf02497828.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Meister, J. J. „Ultrasonic methods in evaluation of inhomogeneous materials“. Signal Processing 14, Nr. 3 (April 1988): 306. http://dx.doi.org/10.1016/0165-1684(88)90086-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhu, S. B., J. Lee und G. W. Robinson. „Non-Maxwell velocity distributions in inhomogeneous materials“. Journal of Fusion Energy 9, Nr. 4 (Dezember 1990): 465–67. http://dx.doi.org/10.1007/bf01588279.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Maugin, Gérard A., Marcelo Epstein und Carmine Trimarco. „Pseudomomentum and material forces in inhomogeneous materials“. International Journal of Solids and Structures 29, Nr. 14-15 (1992): 1889–900. http://dx.doi.org/10.1016/0020-7683(92)90180-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Furukawa, Akira, und Hajime Tanaka. „Inhomogeneous flow and fracture of glassy materials“. Nature Materials 8, Nr. 7 (14.06.2009): 601–9. http://dx.doi.org/10.1038/nmat2468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kubicki, B. „About endurance limit of ductile inhomogeneous materials“. Journal of Materials Science 31, Nr. 9 (1996): 2475–79. http://dx.doi.org/10.1007/bf01152964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Maekawa, S., und J. Inoue. „Giant magneto-transport phenomena in inhomogeneous materials“. Materials Science and Engineering: B 31, Nr. 1-2 (April 1995): 11–16. http://dx.doi.org/10.1016/0921-5107(94)08024-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Goldsmid, H. J., und J. W. Sharp. „The thermal conductivity of inhomogeneous thermoelectric materials“. physica status solidi (b) 241, Nr. 11 (September 2004): 2571–74. http://dx.doi.org/10.1002/pssb.200402048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kolednik, O., J. Predan, G. X. Shan, N. K. Simha und F. D. Fischer. „On the fracture behavior of inhomogeneous materials––A case study for elastically inhomogeneous bimaterials“. International Journal of Solids and Structures 42, Nr. 2 (Januar 2005): 605–20. http://dx.doi.org/10.1016/j.ijsolstr.2004.06.064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Wapenaar, Kees, und Evert Slob. „Reciprocity and Representations for Wave Fields in 3D Inhomogeneous Parity-Time Symmetric Materials“. Symmetry 14, Nr. 11 (25.10.2022): 2236. http://dx.doi.org/10.3390/sym14112236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Inspired by recent developments in wave propagation and scattering experiments with parity-time (PT) symmetric materials, we discuss reciprocity and representation theorems for 3D inhomogeneous PT-symmetric materials and indicate some applications. We start with a unified matrix-vector wave equation which accounts for acoustic, quantum-mechanical, electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismoelectric waves. Based on the symmetry properties of the operator matrix in this equation, we derive unified reciprocity theorems for wave fields in 3D arbitrary inhomogeneous media and 3D inhomogeneous media with PT-symmetry. These theorems form the basis for deriving unified wave field representations and relations between reflection and transmission responses in such media. Among the potential applications are interferometric Green’s matrix retrieval and Marchenko-type Green’s matrix retrieval in PT-symmetric materials.
42

Zhao, Jing, Fei Zhu, Liyou Xu, Yong Tang und Sheng Li. „A homogenization method for nonlinear inhomogeneous elastic materials“. Virtual Reality & Intelligent Hardware 3, Nr. 2 (April 2021): 156–70. http://dx.doi.org/10.1016/j.vrih.2021.01.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Molchanov, I. S., S. N. Chiu und S. A. Zuyev. „Design of inhomogeneous materials with given structural properties“. Physical Review E 62, Nr. 4 (01.10.2000): 4544–52. http://dx.doi.org/10.1103/physreve.62.4544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Arzamaskova, L. M., E. E. Evdokimov und O. V. Konovalov. „Research of Construction Elements of Structure-inhomogeneous Materials“. IOP Conference Series: Materials Science and Engineering 463 (31.12.2018): 032074. http://dx.doi.org/10.1088/1757-899x/463/3/032074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Jiang, Hai, Robert Penno, Krishna M. Pasala, Leo Kempel und Stephan Schneider. „Broadband Microstrip Leaky Wave Antenna With Inhomogeneous Materials“. IEEE Transactions on Antennas and Propagation 57, Nr. 5 (Mai 2009): 1558–62. http://dx.doi.org/10.1109/tap.2009.2016785.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Takamatsu, Hiroyuki, Shingo Sumie, Tsutomu Morimoto, Yutaka Kawata, Yoshiro Nishimoto, Takefumi Horiuchi, Hiroshi Nakayama, Takashi Kita und Taneo Nishino. „Theoretical Analysis of Photoacoustic Displacement for Inhomogeneous Materials“. Japanese Journal of Applied Physics 33, Part 1, No. 10 (15.10.1994): 6032–38. http://dx.doi.org/10.1143/jjap.33.6032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Nan, Ce-Wen, und G. J. Weng. „Theoretical approach to effective electrostriction in inhomogeneous materials“. Physical Review B 61, Nr. 1 (01.01.2000): 258–65. http://dx.doi.org/10.1103/physrevb.61.258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kadigrobov, A., R. I. Shekhter und M. Jonson. „Triplet superconducting proximity effect in inhomogeneous magnetic materials“. Low Temperature Physics 27, Nr. 9 (September 2001): 760–66. http://dx.doi.org/10.1063/1.1401185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Tosaki, Mitsuo, Daisuke Ohsawa und Yasuhito Isozumi. „Experimental energy straggling of protons in inhomogeneous materials“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219-220 (Juni 2004): 241–45. http://dx.doi.org/10.1016/j.nimb.2004.01.061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chiriţă, Stan, und Ionel–Dumitrel Ghiba. „Inhomogeneous plane waves in elastic materials with voids“. Wave Motion 47, Nr. 6 (Oktober 2010): 333–42. http://dx.doi.org/10.1016/j.wavemoti.2010.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie