Auswahl der wissenschaftlichen Literatur zum Thema „Inhomogeneous materials“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inhomogeneous materials" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Inhomogeneous materials"

1

Grimvall, G., und M. S�derberg. „Transport in macroscopically inhomogeneous materials“. International Journal of Thermophysics 7, Nr. 1 (Januar 1986): 207–11. http://dx.doi.org/10.1007/bf00503811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Klemens, P. G. „Thermal conductivity of inhomogeneous materials“. International Journal of Thermophysics 10, Nr. 6 (November 1989): 1213–19. http://dx.doi.org/10.1007/bf00500572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nan, Ce-Wen. „Physics of inhomogeneous inorganic materials“. Progress in Materials Science 37, Nr. 1 (Januar 1993): 1–116. http://dx.doi.org/10.1016/0079-6425(93)90004-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pasternak, Viktoriya, Lyudmila Samchuk, Artem Ruban, Oleksandr Chernenko und Nataliia Morkovska. „Investigation of the Main Stages in Modeling Spherical Particles of Inhomogeneous Materials“. Materials Science Forum 1068 (19.08.2022): 207–14. http://dx.doi.org/10.4028/p-9jq543.

Der volle Inhalt der Quelle
Annotation:
This scientific study deals with the main issues related to the process of filling inhomogeneous materials into a rectangular hopper. The article develops an algorithm for filling particles of structurally inhomogeneous materials. A micrograph of the structure of samples of inhomogeneous materials is presented. It was found that the structure of samples of heterogeneous materials consists of three layers: external, internal and impurities of various grinding aggregates. Based on microstructural analysis, the presence of particles of various shapes and sizes was justified. On the basis of which the main initial conditions for filling the package with spherical particles were described. The basic physical and mechanical properties of structurally inhomogeneous materials were studied using the obtained results. We also constructed an approximate dependence of porosity on the particle diameter of inhomogeneous materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Milton, Graeme W. „Analytic materials“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, Nr. 2195 (November 2016): 20160613. http://dx.doi.org/10.1098/rspa.2016.0613.

Der volle Inhalt der Quelle
Annotation:
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p . If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p . For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90 ° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mironov, Vladimir I., Olga A. Lukashuk und Dmitry A. Ogorelkov. „On Durability of Structurally Inhomogeneous Materials“. Materials Science Forum 1031 (Mai 2021): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.24.

Der volle Inhalt der Quelle
Annotation:
Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dyakonov, O. M. „Briquetting of structurally inhomogeneous porous materials“. Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, Nr. 2 (07.07.2020): 205–14. http://dx.doi.org/10.29235/1561-8358-2020-65-2-205-214.

Der volle Inhalt der Quelle
Annotation:
The work is devoted to solving the axisymmetric problem of the theory of pressing porous bodies with practical application in the form of force calculation of metallurgical processes of briquetting small fractional bulk materials: powder, chip, granulated and other metalworking wastes. For such materials, the shape of the particles (structural elements) is not geometrically correct or generally definable. This was the basis for the decision to be based on the continual model of a porous body. As a result of bringing this model to a two-dimensional spatial model, a closed analytical solution was obtained by the method of jointly solving differential equilibrium equations and the Guber–Mises energy condition of plasticity. The following assumptions were adopted as working hypotheses: the normal radial stress is equal to the tangential one, the lateral pressure coefficient is equal to the relative density of the compact. Due to the fact that the problem is solved in a general form and in a general formulation, the solution itself should be considered as methodological for any axisymmetric loading scheme. The transcendental equations of the deformation compaction of a porous body are obtained both for an ideal pressing process and taking into account contact friction forces. As a result of the development of a method for solving these equations, the formulas for calculating the local characteristics of the stressed state of the pressing, as well as the integral parameters of the pressing process are derived: pressure, stress, and deformation work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alshits, V. I., und H. O. K. Kirchner. „Cylindrically anisotropic, radially inhomogeneous elastic materials“. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, Nr. 2007 (08.03.2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhou, Q., Z. Bian und A. Shakouri. „Pulsed cooling of inhomogeneous thermoelectric materials“. Journal of Physics D: Applied Physics 40, Nr. 14 (29.06.2007): 4376–81. http://dx.doi.org/10.1088/0022-3727/40/14/037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

HIGUCHI, Masahiro, Kyohei TAKEO, Harunobu NAGINO, Takuya MORIMOTO und Yoshinobu TANIGAWA. „OS0121 Plate Theories of inhomogeneous materials“. Proceedings of the Materials and Mechanics Conference 2009 (2009): 305–7. http://dx.doi.org/10.1299/jsmemm.2009.305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Inhomogeneous materials"

1

Feder, David. „Inhomogeneous d-wave superconductors /“. *McMaster only, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barabash, Sergey V. „Topics in the Physics of Inhomogeneous Materials“. The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1053637716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Poladian, Leon. „Effective transport and optical properties of composite materials“. Phd thesis, Department of Theoretical Physics, 1990. http://hdl.handle.net/2123/11724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Koss, Robert Stephen. „Numerical studies of macroscopically disordered materials /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487322984316204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Larsson, Ashley Ian. „Mathematical aspects of wave theory for inhomogeneous materials /“. Title page, table of contents and summary only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phl334.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kusuma, Jeffry. „On some mathematical aspects of deformations of inhomogeneous elastic materials /“. Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phk97.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kinkade, Kyle Richard. „Divergence form equations arising in models for inhomogeneous materials“. Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/900.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Azis, Mohammad Ivan. „On the boundary integral equation method for the solution of some problems for inhomogeneous media“. Title page, contents and summary only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pha995.pdf.

Der volle Inhalt der Quelle
Annotation:
Errata pasted onto front end-paper. Bibliography: leaves 101-104. This thesis employs integral equation methods, or boundary element methods (BEMs), for the solution of three kinds of engineering problems associated with inhomogeneous materials or media: a class of elliptical boundary value problems (BVPs), the boundary value problem of static linear elasticity, and the calculation of the solution of the initial-boundary value problem of non-linear heat conduction for anisotropic media.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Huang, Zhoushen. „Spontaneous formation of charge inhomogeneity on silica surface immersed in water /“. View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202007%20HUANG.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gammage, Justin Wilkinson D. S. „Damage in heterogeneous aluminum alloys /“. *McMaster only, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Inhomogeneous materials"

1

A, Dobrowolski Jerzy, Verly Pierre G, Society of Photo-optical Instrumentation Engineers. und American Physical Society, Hrsg. Inhomogeneous and quasi-inhomogeneous optical coatings: 19-20 August 1993, Québec, Canada. Bellingham, WA: SPIE, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hertz, John. Disordered systems. Stockholm, Sweden: Royal Academy of Sciences, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Alippi, Adriano, und Walter G. Mayer, Hrsg. Ultrasonic Methods in Evaluation of Inhomogeneous Materials. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Adriano, Alippi, und Mayer Walter G, Hrsg. Ultrasonic methods in evaluation of inhomogeneous materials. Dordrecht: Martinus Nijhoff, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Alippi, Adriano. Ultrasonic Methods in Evaluation of Inhomogeneous Materials. Dordrecht: Springer Netherlands, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shik, A. Y. Electronic properties of inhomogeneous semiconductors. Luxembourg: Gordon and Breach, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nemat-Nasser, S. Micromechanics: Overall properties of heterogeneous materials. Amsterdam: North-Holland, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nemat-Nasser, S. Micromechanics: Overall properties of heterogeneous materials. 2. Aufl. Amsterdam: Elsevier, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nantes, Iseli L., und Sergio Brochsztain. Catalysis and photochemistry in heterogeneous media, 2007. Trivandrum: Research Signpost, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

S, Torquato, Krajcinovic Dusan, American Society of Mechanical Engineers. Applied Mechanics Division. und American Society of Mechanical Engineers. Winter Meeting, Hrsg. Macroscopic behavior of heterogeneous materials from the microstructure: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York: The Society, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Inhomogeneous materials"

1

Jin, Xiaoqing, Leon M. Keer, Q. Jane Wang und Eugene L. Chez. „Inhomogeneous Inclusion in Materials“. In Encyclopedia of Tribology, 1832. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Q. Jane, und Dong Zhu. „EHL of Inhomogeneous Materials“. In Interfacial Mechanics, 451–80. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429131011-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dryzek, Jerzy. „Positron in Inhomogeneous Matter“. In SpringerBriefs in Materials, 53–65. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-41093-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Grigorenko, Alexander Ya, Wolfgang H. Müller und Igor A. Loza. „Electric Elastic Waves in Layered Inhomogeneous and Continuously Inhomogeneous Piezoceramic Cylinders“. In Advanced Structured Materials, 111–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74199-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gagnepain, J. J. „Piezoelectric Materials“. In Ultrasonic Methods in Evaluation of Inhomogeneous Materials, 243–62. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Steck, Elmar. „Crack Extension in Inhomogeneous Materials“. In Lecture Notes in Engineering, 94–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88479-5_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Goryacheva, Irina. „Wear Contact of Inhomogeneous Materials“. In Encyclopedia of Tribology, 3987–92. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hendriks, M. A. N., und C. W. J. Oomens. „Identification Aspects of Inhomogeneous Materials“. In Inverse Problems in Engineering Mechanics, 301–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-52439-4_29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Veltri, A., A. V. Sukhov, R. Caputo, L. De Sio, M. Infusino und C. P. Umeton. „CHAPTER 5. Inhomogeneous Photopolymerization in Multicomponent Media“. In Photocured Materials, 87–102. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782620075-00087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zarembowitch, A., J. Berger, M. Fischer und F. Michard. „Inhomogeneous Materials Studied with Brillouin Scattering“. In Ultrasonic Methods in Evaluation of Inhomogeneous Materials, 85–104. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Inhomogeneous materials"

1

Kharevych, Lily, Patrick Mullen, Houman Owhadi und Mathieu Desbrun. „Numerical coarsening of inhomogeneous elastic materials“. In ACM SIGGRAPH 2009 papers. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576246.1531357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bian, Zhixi, und Ali Shakouri. „Cooling Enhancement Using Inhomogeneous Thermoelectric Materials“. In 2006 25th International Conference on Thermoelectrics. IEEE, 2006. http://dx.doi.org/10.1109/ict.2006.331365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Aspnes, D. E. „Electrodynamic Properties of Nanoscopically Inhomogeneous Materials“. In ADVANCED SUMMER SCHOOL IN PHYSICS 2006: Frontiers in Contemporary Physics: EAV06. AIP, 2007. http://dx.doi.org/10.1063/1.2563196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dogariu, Aristide C. „Microstructural characterization of inhomogeneous media“. In Laser-Induced Damage in Optical Materials: 1999, herausgegeben von Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, Keith L. Lewis und M. J. Soileau. SPIE, 2000. http://dx.doi.org/10.1117/12.379334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fesenko, Volodymyr I., und Igor A. Sukhoivanov. „Polarization Conversion in Inhomogeneous Anisotropic Multilayer Structures“. In Advances in Optical Materials. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/aiom.2012.jth2a.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vegni, Lucio, Alessandro Toscano und Filiberto Bilotti. „Properties of inhomogeneous materials for microwave radiation components“. In International Symposium on Optical Science and Technology, herausgegeben von Akhlesh Lakhtakia, Werner S. Weiglhofer und Russell F. Messier. SPIE, 2000. http://dx.doi.org/10.1117/12.390603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Genack, Azriel Z., Yiming Huang, Chushun Tian, Victor A. Gopar und Ping Fang. „Invariance Principle for Wave Propagation inside Inhomogeneous Materials“. In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.jm6a.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Knyaz, A. „Isoimpedance inhomogeneous magnetodielectrics-wave materials for unusual applications“. In IEEE Antennas and Propagation Society International Symposium 1997. Digest. IEEE, 1997. http://dx.doi.org/10.1109/aps.1997.625426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nakamura, Takahide, Ryo Kobayashi und Shuji Ogata. „Recursive Coarse-Grained Particle Method for Inhomogeneous Materials“. In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1130-w01-09.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ramírez, Giovanni. „Quantum entanglement in inhomogeneous 1D systems“. In ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II: Proceedings of the 2nd International Conference on Advances in Materials, Machinery, Electronics (AMME 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5031699.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Inhomogeneous materials"

1

Bass, B. R. (Fracture mechanics of inhomogeneous materials). Office of Scientific and Technical Information (OSTI), Oktober 1990. http://dx.doi.org/10.2172/6548880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bian, Zhixi, und Ali Shakouri. Cooling Enhancement Using Inhomogeneous Thermoelectric Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada459926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Becker, Terrence Lee. Gradient effects on the fracture of inhomogeneous materials. Office of Scientific and Technical Information (OSTI), Mai 2000. http://dx.doi.org/10.2172/764395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

McCall, Katherine R. Application of Resonant Ultrasound Spectroscopy to Inhomogeneous Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schovanec, L., und J. R. Walton. On the Order of the Stress Singularity for an Anti-Plane Shear Crack at the Interface of Two Bonded Inhomogeneous Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada175139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Muhlestein, Michael. Willis coupling in one-dimensional layered bulk media. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/45862.

Der volle Inhalt der Quelle
Annotation:
Willis coupling, which couples the constitutive equations of an acoustical material, has been applied to acoustic metasurfaces with promising results. However, less is understood about Willis coupling in bulk media. In this paper a multiple-scales homogenization method is used to analyze the source and interpretation of Willis coupling in one-dimensional bulk media without any hidden degrees of freedom, or one-dimensional layered media. As expected from previous work, Willis coupling is shown to arise from geometric asymmetries, but is further shown to depend greatly on the measurement position. In addition, a discussion of the predicted material properties, including Willis coupling, of macroscopically inhomogeneous media is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Prinja, Anil K., und Corey Skinner. Benchmark Solutions for Radiation Transport in Stochastic Media with Inhomogeneous Material Statistics. Office of Scientific and Technical Information (OSTI), Juni 2020. http://dx.doi.org/10.2172/1634291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie