Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Inhibiteur de bêta-lactamase“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inhibiteur de bêta-lactamase" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Inhibiteur de bêta-lactamase"
Emile, Carole. „Céphalosporines et association bêta-lactamines-inhibiteurs de bêta lactamase dans le traitement des infections à entérobactéries productrices de bêta lactamase à spectre élargi“. Option/Bio 24, Nr. 489 (April 2013): 21–22. http://dx.doi.org/10.1016/s0992-5945(13)71408-9.
Der volle Inhalt der QuelleDissertationen zum Thema "Inhibiteur de bêta-lactamase"
Atze, Heiner. „Optimization of beta-lactamase inhibitors belonging to the diazabicyclo-octane family and design of a mass spectrometry-based approach for exploring peptidoglycan polymerization“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS159.pdf.
Der volle Inhalt der QuelleBacterial peptidoglycan (PG) is a mesh like structure comprising glycan strands cross-linked by peptide stems. Since PG is a specific and essential component of bacterial cells it is an attractive and validated target for antibacterial agents. Indeed, the first antibiotic in clinical use - the β-lactam penicillin - targets the enzymes catalyzing the final transpeptidation step of PG synthesis - the Penicillin-Binding-Proteins (PBPs). A prevalent mechanism of resistance to β-lactams is the production of β-lactamases (βLs) that inactivate the drugs. A first generation of β-lactamase inhibitors (BLIs) was based on the β-lactam core followed by diazabicyclooctanes (DBOs), which entered the market in 2015 with avibactam. Emergence of mutations compromising the efficacy of DBOs prompted us to study a series of triazole-substituted DBOs that were obtained by click chemistry. The triazole ring was found to be disfavored due to the absence of a hydrogen bond connecting the carboxamide of marketed DBOs to the conserved N132 residue of βLs. However, functionalization of the triazole partially restored inhibition efficacy without impairing drug penetration. Besides the major cross-links formed by PBPs, alternative cross-links are formed by the structurally distinct l,d-transpeptidases (LDTs) mediating resistance to several β-lactams. We investigated the mechanisms of insertion of new subunits into the expanding PG mesh by developing a method based on labeling with heavy isotopes and mass spectrometry. We report the modes of PG polymerization in strains relying on PBPs and LDTs for PG cross-linking in the presence or absence of β-lactams together with the extent of PG recycling
Chemla, Remi. „Activité du sulbactam associé aux bêta-lactamines sur des germes potentiellement sécreteurs de bêta-lactamases isolés à l'hôpital Saint-Antoine“. Paris 5, 1992. http://www.theses.fr/1992PA05P048.
Der volle Inhalt der QuelleLe, Run Eva. „Nouvelles combinaisons de β-lactamines et inhibiteurs de β-lactamase : vers un nouveau traitement des infections à Mycobacterium abscessus chez les patients atteints de mucoviscidose“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS640.pdf.
Der volle Inhalt der QuelleMycobacterium abscessus, a rapidly growing mycobacteria, is responsible for pulmonary infections in cystic fibrosis patients. The recommended treatment consists in an initial phase with the combination of a carbapenem (imipenem), a macrolide (azithromycin), an aminoglycoside (amikacin), and a glycylcycline (tigecycline). The team has investigated the optimization of treatments involving β-lactams and have demonstrated that avibactam, a 2nd generation β-lactamase inhibitor belonging to the diazabicyclooctane (DBO) family, inhibits the β-lactamase BlaMab produced by M. abscessus and substantially increases the efficacy of imipenem both in vitro, intracellularly, and in a zebrafish model. Expression of the β-lactamase gene was found to be induced in infected macrophages. The aim of my PhD project was to evaluate the efficacy of new β-lactam-β-lactamase inhibitor combinations and to investigate β-lactamase regulation in macrophages. In the first part of the thesis, new antibiotic combinations were evaluated in vitro and in macrophages infected by M. abscessus. Rifabutin, usually used in the treatment of infections due to other mycobacteria, showed synergistic activity with imipenem in vitro but the combination was not bactericidal. In infected macrophages, rifabutin enhanced the activity of imipenem and the addition of avibactam led to increased killing. Tedizolid, developed for the treatment of staphylococcal infections, displayed weak synergy in vitro but no bactericidal activity against M. abscessus. In macrophages, tedizolid enhanced the activity of imipenem and the imipenem-tedizolid-rifabutin-avibactam quadruple combination afforded 91% intracellular killing. Finally, the association of imipenem with relebactam, a new β-lactamase inhibitor developed in combination with imipenem, was found to be as active as the imipenem-avibactam both in vitro and in macrophage model. The second part of the thesis was focused on the identification of the stressor triggering the induction of β-lactamase production in macrophages. M. abscessus was grown in vitro in different culture media mimicking stress conditions thought to prevail in macrophages. The β-lactamase specific activity was determined using a chromogenic β-lactam (nitrocefin) as the substrate. None of the physicochemical conditions that were tested led to induction, including acidic pH, high concentrations of metals, oxidative stress or β-lactams. The last objective was to study the impact of the N versus G polymorphism located in the conserved SDN motif of mycobacterial β-lactamases on activity of β-lactam-β-lactamase inhibitor combinations. BlaMab from M. abscessus contains motif SDN whereas BlaC from M. tuberculosis contains motif SDG, a polymorphism that determines efficacious inhibition by either avibactam of clavulanate, respectively. Two isogenic strains of M. abscessus were constructed by allelic exchange. In comparison to the wild-type enzyme, the strain producing BlaMab with the N to G substitution was less susceptible to the β-lactam-avibactam combinations but more efficaciously inhibited by combinations comprising clavulanate. In the context of BlaC, the G to N substitution potentiated inhibition by avibactam. These results establish that the SDN/SDG polymorphism determines the efficacy of combinations comprising a β-lactam and avibactam or clavulanate, as expected from previous kinetic studies performed with purified β-lactamases. N to G and G to N substitutions might be mechanisms of resistance acquisition in M. abscessus and M. tuberculosis, respectively
Malafosse, François. „Contribution à l'étude de l'efficacité des inhibiteurs de bêta-lactamases sur un échantillon de souches hospitalières : activité "in vitro" de leurs associations à trois pénicillines dans diffétentes conditions opératoires, analyse des résultats en fonction des phénocytes de résistance aux bêta-lactamines“. Paris 5, 1995. http://www.theses.fr/1995PA05P177.
Der volle Inhalt der QuelleChauzy, Alexia. „Evaluation pharmacocinétique/pharmacodynamique in vitro et in vivo de l'association aztréonam-avibactam“. Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT1802.
Der volle Inhalt der QuelleThe rapid increase in antibiotic resistance during the last decades and the few numbers of recently approved new antibiotics lead to a significant interest to drug combinations. Among these combinations, the β-lactam-β-lactamase inhibitor combination, such as aztreonam-avibactam (ATM-AVI), is one strategy that aims to overcome the resistance due to β-lactamases production, one of the most relevant mechanisms of resistance in Gram-negative bacteria. However, drug interactions can be complex. To better understand the PK/PD of ATM-AVI, two issues have been addressed in this thesis: i. ATM-AVI PK at the infection site. A microdialysis study performed in rats with or without peritonitis showed that ATM and AVI distribution in intraperitoneal fluid was rapid and that concentrations at the target site could be predicted from blood concentrations.ii. PD interaction between ATM and AVI. Checkerboard experiments analyzed with an Emax model have been used to characterize AVI effect on ATM MIC in terms of efficacy and potency in the presence of various multi-drug resistant strains. A PK/PD model was developed based on in vitro data to describe the time-course of ATM-AVI combined effect and to investigate the individual contribution of each of the AVI effects to the combined activity. According to the modeling results, the combined bactericidal activity was mainly explained by AVI enhancing effect, even though AVI demonstrated high efficiency to prevent ATM hydrolysis
Madec, Stéphanie. „Résistance des bactéries aux antibiotiques à noyau β-lactame : mécanismes et incidences“. Brest, 2001. http://www.theses.fr/2001BRES3105.
Der volle Inhalt der QuelleSiebor, Eliane. „Caractérisation physicochimique et immunologique de ß-lactamases chez les entérobactéries : un modèle d'étude chez le genre Serratia“. Lyon 1, 1989. http://www.theses.fr/1989LYO10004.
Der volle Inhalt der QuelleCaron, François. „Contribution d'un modèle d'endocardite expérimentale à la recherche de thérapeutiques actives vis-a-vis de bactéries nosocomiales multirésistantes“. Rouen, 1993. http://www.theses.fr/1993ROUE02NR.
Der volle Inhalt der QuelleGranier, Bernard. „Activité des associations ticarcilline-acide clavulanique et piperacilline-tazobactam sur les enterobactéries, "Pseudomonas aeruginosa" et les "Acinetobacter baumanii"“. Paris 5, 1994. http://www.theses.fr/1994PA05P196.
Der volle Inhalt der QuelleBou, Kallaba Malek. „Etude des sites métalliques et modélisation de la réactivité des métallo-β-lactamases par des calculs de chimie quantique“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT173/document.
Der volle Inhalt der QuelleMetallo-β-lactamases are enzymes that give the bacteria that synthesize them antibiotic resistance. B Class represents the beta-lactamases, wherein one or two Zn atom(s) promote(s) β-lactams (antibiotics) hydrolysis. The major resistance mechanism is the degradation of the β-lactams by bacterial enzymes called β-lactamases. One major approach to overcome this resistance deals with combination therapy in which a β-lactam drug is given along with a β-lactamase inhibitor, which protects the former from inactivation. The objective of this thesis is to implement modeling tools based on quantum mechanical methods to determine metallo-β-lactamase structures with inhibitors, a step necessary to understand at a later stage the mechanisms of response to the degradation of the inhibitor by β-lactamases and to provide information that will serve to better interpret biological phenomena.We have first determined the geometries and the stability of metal coordination complexes of model systems containing Zn, as in the metallo-β-lactamase metal sites, or Cu, complexed to histidines coordinated by Nπ or Nτ, in order to see if there is a geometric preference for one or the other of the two coordination’s and to see the influence of these different possible coordination’s on the geometrical parameters at the metallic site. Finally, the presence of water and the influence of the aqueous solvent were studied. Using these methods of quantum chemistry based on the density functional theory, we have shown how these methods provide structural information on the symmetry adopted by the metallic centers of Zn2 + and Cu2 +. This structural study allows us to demonstrate structural differences between these two metal ions and to determine the vibrational spectra. These investigations were able to demonstrate the nature of the metal-ligand bonds through topological approaches. We have shown that these preliminary studies have conducted us to choose the best method of DFT calculations for studying zinc centers in β-lactamase structures.To complete the study of metallo-β-lactamase structures, we have determined the structure of the native enzyme L1 (β-lactamase) which permitted to reproduce the geometric parameters of the experimental structures of L1. We have shown that the combination of quantum and classical approaches (QM/MM) allows to reproduce with very good confidence the structural parameters of the L1 enzyme active sites.Finally, we have determined the structures of certain active sites in the B3 family of Metallo-β lactamases (Enzyme L1) to compare the affinities of different families synthesized at IBM in Montpellier (Institute of Biomolecules of Montpellier) and to predict the possible structure of L1 with different inhibitors by QM / MM methods to see if this strategy can be applied to other inhibitors for metallo-β-lactamases