Zeitschriftenartikel zum Thema „Information storage“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Information storage.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Information storage" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

BEAM, C. A. „Information Storage“. Science 228, Nr. 4703 (31.05.1985): 1040. http://dx.doi.org/10.1126/science.3992244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Heber, Joerg. „Information storage“. Nature Materials 6, Nr. 11 (November 2007): 807. http://dx.doi.org/10.1038/nmat2048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Maddox, John. „Quantum information storage“. Nature 327, Nr. 6118 (Mai 1987): 97. http://dx.doi.org/10.1038/327097a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Villacampa, Y., P. Sastre-Vázquez, J. A. Reyes und F. García-Alonso. „INFORMATION STORAGE SYSTEM“. Cybernetics and Systems 41, Nr. 4 (28.05.2010): 307–16. http://dx.doi.org/10.1080/01969721003778576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

SANO, Masayuki. „Information storage media.“ Journal of Information Processing and Management 32, Nr. 5 (1989): 415–25. http://dx.doi.org/10.1241/johokanri.32.415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Byszewski, P., E. Kowalska, M. Popławska, M. Łuczak und Z. Klusek. „Molecules for information storage“. Journal of Magnetism and Magnetic Materials 249, Nr. 3 (September 2002): 486–91. http://dx.doi.org/10.1016/s0304-8853(02)00475-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

KOSHLAND, D. E. „In Reply: Information Storage“. Science 228, Nr. 4703 (31.05.1985): 1040. http://dx.doi.org/10.1126/science.228.4703.1040-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wylie, J. J., M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote und P. K. Khosla. „Survivable information storage systems“. Computer 33, Nr. 8 (2000): 61–68. http://dx.doi.org/10.1109/2.863969.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

MIURA, YOSHIMASA. „Cutting edge of the Information Storage Technologies. Information Storage Technology for IT Era.“ Journal of the Institute of Electrical Engineers of Japan 122, Nr. 4 (2002): 216–18. http://dx.doi.org/10.1541/ieejjournal.122.216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fukuzawa, Kenji, Mitsuo Hirata, Shigeo Nakamura und Hiroshi Tani. „MoF-2 JSME-IIP DIVISION ACADEMIC ROADMAP ON INFORMATION STORAGE“. Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoF—2–1_—_MoF—2–2_. http://dx.doi.org/10.1299/jsmemipe.2015._mof-2-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kobayashi, Tadashi. „Information storage medium and method of erasing information“. Journal of the Acoustical Society of America 87, Nr. 5 (Mai 1990): 2278. http://dx.doi.org/10.1121/1.399108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

MARCUM, Deanna B. „Future of information access. Storage of digital information.“ Journal of Information Processing and Management 39, Nr. 2 (1996): 91–100. http://dx.doi.org/10.1241/johokanri.39.91.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Adambaevich, Khabibullaev Hikmat. „ISSUES OF ENSURING INFORMATION SECURITY IN INFORMATION FACILITIES“. European International Journal of Multidisciplinary Research and Management Studies 02, Nr. 10 (11.10.2022): 281–83. http://dx.doi.org/10.55640/eijmrms-02-10-52.

Der volle Inhalt der Quelle
Annotation:
In the process of globalization, that is, in today's information age, the issue of ensuring information security is gaining priority. Today, the issue of ensuring information security is becoming very important and urgent not only in the Internet network or any information system, but also in information facilities. In this article, the issues of ensuring information security in information facilities are considered on the example of safe storage of rare books in information-library institutions, and relevant suggestions and recommendations are developed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Krishnan, R. „Amorpohous Materials in Information Storage“. Key Engineering Materials 13-15 (Januar 1987): 863–73. http://dx.doi.org/10.4028/www.scientific.net/kem.13-15.863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Koshland, Daniel E. „Response : Information Storage“. Science 228, Nr. 4703 (31.05.1985): 1040. http://dx.doi.org/10.1126/science.228.4703.1040.b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bandić, Zvonimir Z., Dmitri Litvinov und M. Rooks. „Nanostructured Materials in Information Storage“. MRS Bulletin 33, Nr. 9 (September 2008): 831–37. http://dx.doi.org/10.1557/mrs2008.178.

Der volle Inhalt der Quelle
Annotation:
AbstractThe ever-increasing demand for information storage has pushed research and development of nonvolatile memories, particularly magnetic disk drives and silicon-based memories, to areal densities where bit sizes are approaching nanometer dimensions. At this level, material and device phenomena make further scaling increasingly difficult. The difficulties are illustrated in the examples of magnetic media and flash memory, such as thermal instability of sub-100-nm bits in magnetic memory and charge retention in flash memory, and solutions are discussed in the form of patterned media and crosspoint memories. The materials-based difficulties are replaced by nanofabrication challenges, requiring the introduction of new techniques such as nanoimprinting lithography for cost-effective manufacturing and self-assembly for fabrication on the sub-25-nm scale. Articles in this issue describe block-copolymer lithographic fabrication of patterned media, materials studies on the scaling limits of phase-change-based crosspoint memories, nanoscale fabrication using imprint lithography, and biologically inspired protein-based memory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Zemlyak, Maksim S., und Nadezhda B. Victorova. „DECOHERENCE-FREE STORAGE INFORMATION SPACE“. RSUH/RGGU Bulletin. Series Information Science. Information Security. Mathematics, Nr. 2 (2020): 72–84. http://dx.doi.org/10.28995/2686-679x-2020-2-72-84.

Der volle Inhalt der Quelle
Annotation:
Quantum systems are of great interest in current realities. Quantum computers are not an alternative to the classic. Rather, they can be attributed to the class of devices specializing in a separate group of tasks. However, a key issue in the design of quantum computers is the issue of decoherence time. To combat that phenomenon, various methods of isolating a quantum system are being developed, including the use of extremely low temperatures and high vacuum. In addition, one of the ways to combat decoherence is to use dark states, due to the fact that a system of atoms in this state is not able to interact with light – absorb or emit photons. In this paper, various systems of three-level atoms are considered. Schemes of two types of atoms are represented graphically – λ-atoms, v-atoms. The concept of a dark quantum state and the concept of a family of a quantum state are introduced. An algorithm for finding the dimension and basis of the subspace of dark states is presented. According to the algorithm, the dimensions and bases of the subspaces of dark states in these systems are calculated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Chklovskii, D. B., B. W. Mel und K. Svoboda. „Cortical rewiring and information storage“. Nature 431, Nr. 7010 (Oktober 2004): 782–88. http://dx.doi.org/10.1038/nature03012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Portoghese, Christine P. „SIRE: Information storage and searching“. Electronic Library 3, Nr. 5 (Mai 1985): 314–16. http://dx.doi.org/10.1108/eb044670.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

MAIA, M. D. „INFORMATION STORAGE IN BLACK HOLES“. International Journal of Modern Physics D 14, Nr. 12 (Dezember 2005): 2251–55. http://dx.doi.org/10.1142/s0218271805007838.

Der volle Inhalt der Quelle
Annotation:
The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the M6(4, 2) bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wang, Hu, Xiaofan Ji, Zachariah A. Page und Jonathan L. Sessler. „Fluorescent materials-based information storage“. Materials Chemistry Frontiers 4, Nr. 4 (2020): 1024–39. http://dx.doi.org/10.1039/c9qm00607a.

Der volle Inhalt der Quelle
Annotation:
Fluorescent materials-based information storage systems are characterised by attractive data security, stability, and stimuli responsive features. We summarise here, recent progress in the area of fluorescent materials-based information storage codes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

MEHRING, M. „Aspects of molecular information storage“. International Journal of Electronics 73, Nr. 5 (November 1992): 1073–83. http://dx.doi.org/10.1080/00207219208925772.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Stucky, Robert Bruce. „Self-organized information storage system“. Laboratory Automation & Information Management 33, Nr. 2 (Dezember 1997): 152. http://dx.doi.org/10.1016/s1381-141x(97)80042-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chandler, Simon. „Tribology of Information Storage Devices“. Tribology International 33, Nr. 9 (September 2000): 591. http://dx.doi.org/10.1016/s0301-679x(00)00132-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Petford-Long, A. K., P. Shang, Y. G. Wang und N. Owen. „Nanoscale materials for information storage“. Microscopy and Microanalysis 8, S02 (August 2002): 296–97. http://dx.doi.org/10.1017/s1431927602100808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Chandler, Simon. „Tribology of Information Storage Devices“. Tribology International 33, Nr. 5-6 (Mai 2000): 297. http://dx.doi.org/10.1016/s0301-679x(00)00055-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kopperman, Ralph. „On storage of topological information“. Discrete Applied Mathematics 147, Nr. 2-3 (April 2005): 287–300. http://dx.doi.org/10.1016/j.dam.2004.09.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Hunter, P. „The new storage [business data storage management]“. Information Professional 2, Nr. 6 (01.12.2005): 20–22. http://dx.doi.org/10.1049/inp:20050603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhang, Kai. „Research of Information Resource Storage Mode Based on Cloud Storage“. Applied Mechanics and Materials 543-547 (März 2014): 2969–72. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.2969.

Der volle Inhalt der Quelle
Annotation:
This paper introduces the present situation of library information resource storage. And SAN mode base on cloud storage is mainly studied. And then, the structure of the system based on SAN is put forward. In addition, it illustrates the principle of RAID5 and parity algorithm. At last, layered structure of cloud storage platform is introduced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Coleman, David E. „Evolution of a Library: Information Storage to Information Use“. Journal of Hospital Librarianship 17, Nr. 3 (14.06.2017): 201–8. http://dx.doi.org/10.1080/15323269.2017.1328569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Aoyagi, Seiichi. „Information processing apparatus, information processing method, and storage medium“. Journal of the Acoustical Society of America 120, Nr. 1 (2006): 26. http://dx.doi.org/10.1121/1.2227697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Switzer, Jennifer, und Barath Raghavan. „Information batteries“. ACM SIGEnergy Energy Informatics Review 1, Nr. 1 (November 2021): 1–11. http://dx.doi.org/10.1145/3508467.3508468.

Der volle Inhalt der Quelle
Annotation:
Coping with the intermittency of renewable power is a fundamental challenge, with load shifting and grid-scale storage as key responses. We propose Information Batteries (IB), in which energy is stored in the form of information---specifically, the results of completed computational tasks. Information Batteries thus provide storage through speculative load shifting, anticipating computation that will be performed in the future. We take a distributed systems perspective, and evaluate the extent to which an IB storage system can be made practical through augmentation of compiler toolchains, key-value stores, and other important elements in modern hyper-scale compute. In particular, we implement one specific IB prototype by augmenting the Rust compiler to enable transparent function-level precomputation and caching. We evaluate the overheads this imposes, along with macro-level job prediction and power prediction. We also evaluate the space of operation for an IB system, to identify the best case efficiency of any IB system for a given power and compute regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Wang, Shi Jie, Hao Sun, Hong Tang und Shi Liang Wang. „Design of Storage Management Information System and Analysis of the Information Flow“. Applied Mechanics and Materials 16-19 (Oktober 2009): 1223–27. http://dx.doi.org/10.4028/www.scientific.net/amm.16-19.1223.

Der volle Inhalt der Quelle
Annotation:
Storage management is the core of the material management. The design rules of storage management system are presented as such that the usability, reliability, progress, openness, data integrality and unity, and security must be ensured. Demand analysis is performed for the storage management system of Huachen Xinguang Engine Plant. The functions and the corresponding subsystems are scheduled. The configurations of data flow in supply management, stored. It took positive effect on raising the productivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Park, Young-Pil, No-Cheol Park und Chul-Jin Kim. „W1 Small Form Factor Information Storage Devices for Mobile Applications in Korea“. Proceedings of the Conference on Information, Intelligence and Precision Equipment : IIP 2005 (2005): 5–9. http://dx.doi.org/10.1299/jsmeiip.2005.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Shadrin, Alexey A., Andrei Grigoriev und Dmitri V. Parkhomchuk. „Positional Information Storage in Sequence Patterns“. Computational Molecular Bioscience 03, Nr. 02 (2013): 18–26. http://dx.doi.org/10.4236/cmb.2013.32003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Krylov, Anna I., John Doyle und Kang-Kuen Ni. „Quantum computing and quantum information storage“. Physical Chemistry Chemical Physics 23, Nr. 11 (2021): 6341–43. http://dx.doi.org/10.1039/d1cp90024b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

James, Ryan G., Korana Burke und James P. Crutchfield. „MEASURING INFORMATION CREATION, DESTRUCTION, AND STORAGE“. Information Processes, Systems and Technologies 3, Nr. 2 (2022): 5–9. http://dx.doi.org/10.52529/27821617_2022_3_2_05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Nieves, Oscar A., Matthew D. Arnold, Mikołaj K. Schmidt, Michael J. Steel und Christopher G. Poulton. „Noise in Brillouin based information storage“. Optics Express 29, Nr. 24 (11.11.2021): 39486. http://dx.doi.org/10.1364/oe.439926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lu, Chih-Yuan, und Howard Kuan. „Nonvolatile semiconductor memory revolutionizing information storage“. IEEE Nanotechnology Magazine 3, Nr. 4 (Dezember 2009): 4–9. http://dx.doi.org/10.1109/mnano.2009.934861.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Getz, Malcolm. „ELECTRONIC INFORMATION: Storage, Communication, and Access“. Bottom Line 2, Nr. 3 (März 1989): 39–40. http://dx.doi.org/10.1108/eb025189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

MIURA, Yoshimasa. „Information Storage for the Broadband Era“. Journal of the Society of Mechanical Engineers 105, Nr. 998 (2002): 26–30. http://dx.doi.org/10.1299/jsmemag.105.998_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Jehiel, Philippe, und Jakub Steiner. „Selective Sampling with Information-Storage Constraints“. Economic Journal 130, Nr. 630 (12.12.2019): 1753–81. http://dx.doi.org/10.1093/ej/uez068.

Der volle Inhalt der Quelle
Annotation:
Abstract A memoryless agent can acquire arbitrarily many signals. After each signal observation, she either terminates and chooses an action, or she discards her observation and draws a new signal. By conditioning the probability of termination on the information collected, she controls the correlation between the payoff state and her terminal action. We provide an optimality condition for the emerging stochastic choice. The condition highlights the benefits of selective memory applied to the extracted signals. Implications—obtained in simple examples—include (i) confirmation bias, (ii) speed-accuracy complementarity, (iii) overweighting of rare events, and (iv) salience effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Cavallini, M. „Information Storage Using Supramolecular Surface Patterns“. Science 299, Nr. 5606 (24.01.2003): 531. http://dx.doi.org/10.1126/science.1078012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Brethenck, Leslie. „Chemical incompatibility and storage: Information sources“. Chemical Health and Safety 6, Nr. 2 (März 1999): 4. http://dx.doi.org/10.1016/s1074-9098(00)80002-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Pratt, Polly, Frank Tallis und Michael Eysenck. „Information-processing, storage characteristics and worry“. Behaviour Research and Therapy 35, Nr. 11 (November 1997): 1015–23. http://dx.doi.org/10.1016/s0005-7967(97)00057-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lindsey, Jonathan S., und David F. Bocian. „Molecules for Charge-Based Information Storage“. Accounts of Chemical Research 44, Nr. 8 (16.08.2011): 638–50. http://dx.doi.org/10.1021/ar200107x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Greengard, Samuel. „A new approach to information storage“. Communications of the ACM 56, Nr. 8 (August 2013): 13–15. http://dx.doi.org/10.1145/2492007.2492013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Petford-Long, A. K., H. L. Brown, G. Hodge, B. Warot, M. T. Keif und J. Nickel. „Magnetic Imaging of Information Storage Materials“. Microscopy and Microanalysis 10, S03 (August 2004): 16–17. http://dx.doi.org/10.1017/s1431927604555708.

Der volle Inhalt der Quelle
Annotation:
Extended abstract of a paper presented at the Pre-Meeting Congress: Materials Research in an Aberration-Free Environment, at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, July 31 and August 1, 2004.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Nenashkina, Anastasia, Semyon Koltsov, Ekaterina Zaytseva, Anastasia Brunova, Igor Pantiukhin und Ekaterina V. Skorb. „Storage of Information Using Periodic Precipitation“. ACS Omega 5, Nr. 14 (02.04.2020): 7809–14. http://dx.doi.org/10.1021/acsomega.9b03954.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Gasanov, E. E. „Information storage and search complexity theory“. Journal of Mathematical Sciences 168, Nr. 1 (12.06.2010): 32–48. http://dx.doi.org/10.1007/s10958-010-9973-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie