Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Information storage“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Information storage" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Information storage"
BEAM, C. A. „Information Storage“. Science 228, Nr. 4703 (31.05.1985): 1040. http://dx.doi.org/10.1126/science.3992244.
Der volle Inhalt der QuelleHeber, Joerg. „Information storage“. Nature Materials 6, Nr. 11 (November 2007): 807. http://dx.doi.org/10.1038/nmat2048.
Der volle Inhalt der QuelleMaddox, John. „Quantum information storage“. Nature 327, Nr. 6118 (Mai 1987): 97. http://dx.doi.org/10.1038/327097a0.
Der volle Inhalt der QuelleVillacampa, Y., P. Sastre-Vázquez, J. A. Reyes und F. García-Alonso. „INFORMATION STORAGE SYSTEM“. Cybernetics and Systems 41, Nr. 4 (28.05.2010): 307–16. http://dx.doi.org/10.1080/01969721003778576.
Der volle Inhalt der QuelleSANO, Masayuki. „Information storage media.“ Journal of Information Processing and Management 32, Nr. 5 (1989): 415–25. http://dx.doi.org/10.1241/johokanri.32.415.
Der volle Inhalt der QuelleByszewski, P., E. Kowalska, M. Popławska, M. Łuczak und Z. Klusek. „Molecules for information storage“. Journal of Magnetism and Magnetic Materials 249, Nr. 3 (September 2002): 486–91. http://dx.doi.org/10.1016/s0304-8853(02)00475-4.
Der volle Inhalt der QuelleKOSHLAND, D. E. „In Reply: Information Storage“. Science 228, Nr. 4703 (31.05.1985): 1040. http://dx.doi.org/10.1126/science.228.4703.1040-a.
Der volle Inhalt der QuelleWylie, J. J., M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote und P. K. Khosla. „Survivable information storage systems“. Computer 33, Nr. 8 (2000): 61–68. http://dx.doi.org/10.1109/2.863969.
Der volle Inhalt der QuelleMIURA, YOSHIMASA. „Cutting edge of the Information Storage Technologies. Information Storage Technology for IT Era.“ Journal of the Institute of Electrical Engineers of Japan 122, Nr. 4 (2002): 216–18. http://dx.doi.org/10.1541/ieejjournal.122.216.
Der volle Inhalt der QuelleFukuzawa, Kenji, Mitsuo Hirata, Shigeo Nakamura und Hiroshi Tani. „MoF-2 JSME-IIP DIVISION ACADEMIC ROADMAP ON INFORMATION STORAGE“. Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoF—2–1_—_MoF—2–2_. http://dx.doi.org/10.1299/jsmemipe.2015._mof-2-1_.
Der volle Inhalt der QuelleDissertationen zum Thema "Information storage"
Scoffin, Robert A. „New materials for optical information storage“. Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365756.
Der volle Inhalt der QuelleNguyen, Hieu Duy. „It and Bit| Decoherence and Information Storage“. Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3612010.
Der volle Inhalt der QuelleWe studied two topics: i) how much physical resources are needed to store information and ii) decoherent histories theory applied to Grover search. Given a system consisting of d degrees of freedom each of mass m to store an amount S of information, we find that its average energy, 〈H〉, or size, 〈r2〉, can be made arbitrarily small individually, but its product 〈P〉 = 〈H〉〈 r2〉 is bounded below by (exp{S/d} − 1)2d2/m. This result is obtained in a nonrelativistic, quantum mechanical setting, and it is independent of earlier thermodynamical results such as the Bekenstein bound on the entropy of black holes.
The second topic is decoherent histories applied to the Grover search problem. The theory of decoherent histories is an attempt to derive classical physics from positing only quantum laws at the fundamental level without notions of a classical apparatus or collapse of the wave-function. Searching for a marked target in a list of N items requires Ω( N) oracle queries when using a classical computer, while a quantum computer can accomplish the same task in O([special characters omitted]) queries using Grover's quantum algorithm. We study a closed quantum system executing Grover algorithm in the framework of decoherent histories and find it to be an exactly solvable model, thus yielding an alternate derivation of Grover's famous result. We also subject the Grover-executing computer to a generic external influence without needing to know the specifics of the Hamiltonian insofar as the histories decohere. Depending on the amount of decoherence, which is captured in our model by a single parameter related to the amount of information obtained by the environment, the search time can range from quantum to classical. Thus, we identify a key effect induced by the environment that can adversely affect a quantum computer's performance and demonstrate exactly how classical computing can emerge from quantum laws.
Bejjani, Ghassan J. „Information storage and access in decisionmaking organizations“. Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15142.
Der volle Inhalt der QuelleMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 92-94.
by Ghassan J. Bejjani.
M.S.
Gao, Qiang 1964. „Noise reduction techniques for holographic information storage“. Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282620.
Der volle Inhalt der QuelleFohlin, Johan. „Home Storage Manager“. Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17494.
Der volle Inhalt der QuelleShadrin, Alexey [Verfasser]. „Positional Information Storage in Sequence Patterns / Alexey Shadrin“. Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1060368056/34.
Der volle Inhalt der QuelleVarshney, Lav R. (Lav Raj). „Optimal information storage : nonsequential sources and neural channels“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37851.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
MIT Institute Archives copy: pages 101-163 bound in reverse order.
Includes bibliographical references (p. 141-163).
Information storage and retrieval systems are communication systems from the present to the future and fall naturally into the framework of information theory. The goal of information storage is to preserve as much signal fidelity under resource constraints as possible. The information storage theorem delineates average fidelity and average resource values that are achievable and those that are not. Moreover, observable properties of optimal information storage systems and the robustness of optimal systems to parameter mismatch may be determined. In this thesis, we study the physical properties of a neural information storage channel and also the fundamental bounds on the storage of sources that have nonsequential semantics. Experimental investigations have revealed that synapses in the mammalian brain possess unexpected properties. Adopting the optimization approach to biology, we cast the brain as an optimal information storage system and propose a theoretical framework that accounts for many of these physical properties. Based on previous experimental and theoretical work, we use volume as a limited resource and utilize the empirical relationship between volume anrid synaptic weight.
(cont.) Our scientific hypotheses are based on maximizing information storage capacity per unit cost. We use properties of the capacity-cost function, e-capacity cost approximations, and measure matching to develop optimization principles. We find that capacity-achieving input distributions not only explain existing experimental measurements but also make non-trivial predictions about the physical structure of the brain. Numerous information storage applications have semantics such that the order of source elements is irrelevant, so the source sequence can be treated as a multiset. We formulate fidelity criteria that consider asymptotically large multisets and give conclusive, but trivialized, results in rate distortion theory. For fidelity criteria that consider fixed-size multisets. we give some conclusive results in high-rate quantization theory, low-rate quantization. and rate distortion theory. We also provide bounds on the rate-distortion function for other nonsequential fidelity criteria problems. System resource consumption can be significantly reduced by recognizing the correct invariance properties and semantics of the information storage task at hand.
by Lav R. Varshney.
S.M.
Adar, Eytan 1975. „Hybrid-search and storage of semi-structured information“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46274.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 113-118).
Given today's tangle of digital information, one of the hardest tasks for computer users of information systems is finding anything in the mess. For a number of well documented reasons including the amazing growth in the Internet's popularity and the drop in the cost of storage, the amount of information on the net as well as on a user's local computer, has increased dramatically in recent years. Although this readily available information should be extremely beneficial for computer users, paradoxically it is now much harder to find anything. Many different solutions have been proposed to the general information seeking task of users, but few if any have addressed the needs of individuals or have leveraged the benefit of single-user interaction. The Haystack project is an attempt to answer the needs of the individual user. Once the user's information is represented in Haystack, the types of questions users may ask are highly varied. In this thesis we will propose a means of representing information in a robust framework within Haystack. Once the information is represented we describe a mechanism by which the diverse questions of the individual can be answered. This novel method functions by using a combination of existing information systems. We will call this combined system a hybrid-search system.
by Eytan Adar.
M.Eng.
Johnston, Reece G. „Secure storage via information dispersal across network overlays“. Thesis, The University of Alabama in Huntsville, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10157562.
Der volle Inhalt der QuelleIn this paper, we describe a secure distributed storage model to be used especially with untrusted devices, most notably cloud storage devices. The model does so through a peer-to-peer overlay and storage protocol designed to run on existing networked systems. We utilize a structured overlay that is organized in a layered, hierarchical manner based on the underlying network structure. These layers are used as storage sites for pieces of data near the layer at which that data is needed. This data is generated and distributed via a technique called an information dispersal algorithm (IDA) which utilizes an erasure code such as Cauchy Reed-Solomon (RS). Through the use of this IDA, the data pieces are organized across neighboring layers to maximize locality and prevent a compromise within one layer from compromising the data of that layer. Speci?cally, for a single datum to become compromised, a minimum of two layers would have to become compromised. As a result, security, survivability, and availability of the data is improved compared to other distributed storage systems. We present signi?cant background in this area followed by an analysis of similar distributed storage systems. Then, an overview of our proposed model is given along with an in-depth analysis, including both experimental results and theoretical analysis. The recorded overhead (encoding/decoding times and associated data sizes) shows that such a scheme can be utilized with little increase in overall latency. Making the proposed model an ideal choice for any distributed storage needs.
Shrestha, Tej Bahadur. „Heterocycles for life-sciences applications and information storage“. Diss., Kansas State University, 2010. http://hdl.handle.net/2097/13540.
Der volle Inhalt der QuelleDepartment of Chemistry
Stefan H. Bossmann
The photochromic spirodihydroindolizine/betaine (DHI/B) system has been reinvestigated applying picosecond, microsecond, stationary absorption measurements, and NMR-kinetics. The first surprise was that the electronic structure of the betaines is quite different than commonly assumed. The photochemical ring-opening of DHIs to betaines is a conrotatory 1,5 electrocyclic reaction, as picosecond absorption spectroscopy confirms. The (disrotatory) thermal ring-closing occurs from the cisoid betaine. The lifetime of the transoid betaine is 60 s at 300 K, whereas the lifetime of the cisoid isomer is of the order of 250 microseconds. According to these results, the electrocyclic back reaction of the betaines to the DHI is NOT rate determining, as previously thought, but the cisoid-transoid-isomerization of the betaine. Although the presence of a second nitrogen atom increases the photostability of the spirodihydroindolizine-pyridazine/betaine-system remarkably, the photochemical reaction mechanism appears to be exactly the same for spirodihydroindolizine-pyridazine/betaine-system. A nondestructive photoswitch or an information recording systems has been explored using styryl-quinolyldihydroindolizines. Both isomers DHI and betaine are fluorescent. When the blue betaine is stabilized in a thin polymethyl methacrylate (PMMA) matrix, it is stable for several hours even in room temperature and very stable at 77K. Although irradiation of visible light = 532 nm allows the photo-induced reaction of the Betaine back to the DHI, a nondestructive read-out can be performed at λ = 645 nm upon excitation with λ = 580 nm. Image recording (write) and read-out, as well as information storage (at 77K) have been demonstrated. Charged and maleimide-functionalized DHI/B systems have beed synthesized for use as photochemical gates of the mycobacterial channel porin MspA. Positively charged and maleimide functionalized DHI groups that were attached to the DHI/B-system permit the binding of the photoswitch to selective positions in the channel proteins due to the presence of a cysteine moiety. An inexpensive new method for the large scale synthesis of coelenterazine is developed. A modified Negishi coupling reaction is used to make pyrazine intermediates from aminopyrazine as an economical starting material. This method permits the use of up to 1g coelenterazine per kg body weight and day, which turns the renilla transfected stem cells into powerful light sources.
Bücher zum Thema "Information storage"
Große, Cornelia S., und Rolf Drechsler, Hrsg. Information Storage. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19262-4.
Der volle Inhalt der QuelleDudman, K. E. Data, information & information storage. London: University of London, External Advisory Service, 1992.
Den vollen Inhalt der Quelle findenHammersley, P. Data, information & information storage. 2. Aufl. London: University of London, External Publications, 1995.
Den vollen Inhalt der Quelle findenKorfhage, Robert R. Information storage and retrieval. New York: Wiley Computer Pub., 1997.
Den vollen Inhalt der Quelle findenM, Taratorin A., Hrsg. Magnetic information storage technology. San Diego: Academic Press, 1999.
Den vollen Inhalt der Quelle findenMittal, K. L. Polymers in Information Storage Technology. Boston, MA: Springer US, 1989.
Den vollen Inhalt der Quelle findenChung, Soon M., Hrsg. Multimedia Information Storage and Management. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1431-8.
Der volle Inhalt der QuelleMittal, K. L., Hrsg. Polymers in Information Storage Technology. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0843-0.
Der volle Inhalt der QuelleKowalski, Gerald J., und Mark T. Maybury. Information Storage and Retrieval Systems. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b116174.
Der volle Inhalt der Quelle1945-, Mittal K. L., Hrsg. Polymers in information storage technology. New York: Plenum Press, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Information storage"
Lizier, Joseph T. „Information Storage“. In The Local Information Dynamics of Distributed Computation in Complex Systems, 53–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32952-4_3.
Der volle Inhalt der QuellePartridge, L. Donald, und Lloyd D. Partridge. „Information Storage“. In Nervous System Actions and Interactions, 175–93. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0425-2_9.
Der volle Inhalt der QuelleFahle, Manfred. „Information Processing and Storage in the Brain“. In Information Storage, 1–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_1.
Der volle Inhalt der QuelleKozlov, Michail D. „Verbal Short-Term Memory: Insights in Human Information Storage“. In Information Storage, 41–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_2.
Der volle Inhalt der QuelleShirinzadeh, Saeideh, und Rolf Drechsler. „In-Memory Computing: The Integration of Storage and Processing“. In Information Storage, 79–110. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_3.
Der volle Inhalt der QuelleFroehlich, Saman, Daniel Große und Rolf Drechsler. „Approximate Memory: Data Storage in the Context of Approximate Computing“. In Information Storage, 111–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_4.
Der volle Inhalt der QuelleBeßler, Daniel, Asil Kaan Bozcuoğlu und Michael Beetz. „Information System for Storage, Management, and Usage for Embodied Intelligent Systems“. In Information Storage, 135–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_5.
Der volle Inhalt der QuelleBöhling, Rieke, und Christine Lohmeier. „On “Storing Information” in Families: (Mediated) Family Memory at the Intersection of Individual and Collective Remembering“. In Information Storage, 161–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_6.
Der volle Inhalt der QuelleHagedoorn, Berber. „Cultural Memory and Screen Culture“. In Information Storage, 179–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_7.
Der volle Inhalt der QuelleKramp, Leif. „The Complicated Preservation of the Television Heritage in a Digital Era“. In Information Storage, 199–238. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Information storage"
Lee, Kyung-Geun, In-Oh Hwang, Chang-Min Park, Yoon-Gi Kim, In-Sik Park und Dong-Ho Shin. „Effect of first information layer on second information layer in dual-layer disc“. In Optical Data Storage, herausgegeben von Terril Hurst und Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453413.
Der volle Inhalt der QuelleHayami, Atsushi A., Tsuyoshi Oki, Makoto M. Itonaga und Ken Miyazaki. „Extra information recording on D8-15 modulation“. In Optical Data Storage, herausgegeben von Terril Hurst und Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453370.
Der volle Inhalt der QuelleMansuripur, M., P. K. Khulbe, S. M. Kuebler, J. W. Perry, M. S. Giridhar und N. Peyghambarian. „Information Storage and Retrieval using Macromolecules as Storage Media“. In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tuc2.
Der volle Inhalt der QuelleMansuripur, Masud, Pramod K. Khulbe, Stephen M. Kuebler, Joseph W. Perry, M. S. Giridhar, James K. Erwin, Kibyung Seong, Seth R. Marder und Nasser Peyghambarian. „Information storage and retrieval using macromolecules as storage media“. In Optical Data Storage 2003, herausgegeben von Michael O'Neill und Naoyasu Miyagawa. SPIE, 2003. http://dx.doi.org/10.1117/12.533057.
Der volle Inhalt der QuelleThomas, Fred C. „Exploring optical multilevel information storage using subwavelength-sized media structures“. In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tue43p.
Der volle Inhalt der QuelleLai, Ching-Ming. „Study and realization of a non-contact power supply system with fast information transmission capability“. In Energy Storage. IEEE, 2011. http://dx.doi.org/10.1109/pesa.2011.5982943.
Der volle Inhalt der QuelleAbbasi, Hasan, Greg Eisenhauer, Scott Klasky, Karsten Schwan und Matthew Wolf. „Extracting information ASAP!“ In 2010 5th Petascale Data Storage Workshop (PDSW). IEEE, 2010. http://dx.doi.org/10.1109/pdsw.2010.5668088.
Der volle Inhalt der QuelleMansuripur, Masud. „Information Storage and Retrieval Using Macromolecules as Storage Media“. In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87089.
Der volle Inhalt der QuelleKim, Dong-Oh, Myung-Hoon Cha und Hong-Yeon Kim. „Remote Direct Storage Management for Exa-Scale Storage“. In Future Generation Information Technology 2016. Science & Engineering Research Support soCiety, 2016. http://dx.doi.org/10.14257/astl.2016.139.04.
Der volle Inhalt der QuellePitsyuga, Vitaly V., Michael Y. Kolesnikov und Igor V. Kosyak. „Protection method for an optical information carrier“. In International Conference on Optical Storage, herausgegeben von Viacheslav V. Petrov und Sergei V. Svechnikov. SPIE, 1997. http://dx.doi.org/10.1117/12.267711.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Information storage"
Seeman, Nadrian, W. Morrison, E. Monteith, D. Gallaro und J. Filsinger. DNA Nanotechnology for Massive Information Storage. Fort Belvoir, VA: Defense Technical Information Center, Juli 2001. http://dx.doi.org/10.21236/ada398265.
Der volle Inhalt der QuelleJones, Robert R. Information Storage and Processing in Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2008. http://dx.doi.org/10.21236/ada496451.
Der volle Inhalt der QuelleHusa, E. I., R. E. Raymond, R. K. Welty, S. M. Griffith, B. M. Hanlon, R. R. Rios und N. J. Vermeulen. Hanford Site Waste Storage Tank Information Notebook. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10182105.
Der volle Inhalt der QuelleRaddatz, M. G., und M. D. Waters. Information handbook on independent spent fuel storage installations. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/419087.
Der volle Inhalt der QuelleLawandy, Nabil M. Novel Composite Materials for Nonlinear Optics and Information Storage. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada325676.
Der volle Inhalt der QuelleMcCall, R. P., J. M. Ginder, J. M. Leng, K. A. Coplin, H. J. Ye, A. J. Epstein, G. E. Asturias et al. Photoinduced Absorption and Erasable Optical Information Storage in Polyanilines. Fort Belvoir, VA: Defense Technical Information Center, März 1991. http://dx.doi.org/10.21236/ada234108.
Der volle Inhalt der QuelleHuber, George P. A Study of Organizational Information Search, Acquisition, Storage and Retrieval. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada172063.
Der volle Inhalt der QuelleDiCerbo, J. Excluded USTs: RCRA Subtitle 1, Underground Storage Tanks. RCRA Information Brief. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10143292.
Der volle Inhalt der QuelleKrishnan, Kannan M. CRADA Final Report: Tailored Microstructures in Advanced Materials for Information Storage. Office of Scientific and Technical Information (OSTI), Februar 2002. http://dx.doi.org/10.2172/1157020.
Der volle Inhalt der QuelleKryder, Mark H., David Thuel, Chris Bowman und Ching-Hsing Huang. Fabrication of Material and Devices for Very High Density Information Storage. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada174548.
Der volle Inhalt der Quelle