Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Information 3D.

Zeitschriftenartikel zum Thema „Information 3D“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Information 3D" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kuznetsov, A. A., O. O. Stefanovych, D. I. Prokopovych-Tkachenko und K. O. Kuznetsova. „3D STEGANOGRAPHY INFORMATION HIDING“. Telecommunications and Radio Engineering 78, Nr. 12 (2019): 1049–61. http://dx.doi.org/10.1615/telecomradeng.v78.i12.30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ramos, Francisco, Miguel Chover und Oscar Ripolles. „A Multiresolution Approach to Render 3D Models“. Informatica 24, Nr. 4 (01.01.2013): 603–18. http://dx.doi.org/10.15388/informatica.2013.06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

OKI, Makoto, Yasuzo SUTO, Okinori YAMAMOTO, Tetsuro SUGIYAMA und Kazuhiko FUJII. „3D Visualization of City Information“. Journal of the Visualization Society of Japan 20, Nr. 1Supplement (2000): 193–96. http://dx.doi.org/10.3154/jvs.20.1supplement_193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Roush, W. „IMAGING: Information Displays Go 3D“. Science 278, Nr. 5342 (21.11.1997): 1398. http://dx.doi.org/10.1126/science.278.5342.1398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ostrovsky, Y., A. Torralba und P. Sinha. „Recognition with purely 3D information“. Journal of Vision 2, Nr. 7 (15.03.2010): 684. http://dx.doi.org/10.1167/2.7.684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gasteiger, Johann, Jens Sadowski, Jan Schuur, Paul Selzer, Larissa Steinhauer und Valentin Steinhauer. „Chemical Information in 3D Space“. Journal of Chemical Information and Computer Sciences 36, Nr. 5 (Januar 1996): 1030–37. http://dx.doi.org/10.1021/ci960343+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kuznetsov, А. А., O. O. Stefanovych, D. I. Prokopovych-Tkachenko und K. O. Kuznetsova. „3D steganography hiding of information“. Radiotekhnika, Nr. 195 (28.12.2018): 193–202. http://dx.doi.org/10.30837/rt.2018.4.195.19.

Der volle Inhalt der Quelle
Annotation:
A new direction of technical steganography related to the concealment of information in the process of layer-by-layer creation (cultivation) of a solid-state object using various 3D-printing technologies is investigated. Information data are converted into a digital 3D-model of elementary physical objects that are placed inside this 3D-model of the container product. After printing, a solid object physically contains the hidden information that cannot be deleted or distorted without damaging the container product. In addition, the applied methods do not reduce the operational, aesthetic and any other properties of the finished product. The proposed complex is invariant to the method of layer-by-layer growing, that is, it can be equipped with any peripheral devices of 3D-printing of various manufacturers with any materials and principles of layer-by-layer creation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

He, Yunlong, und Liang Guo. „Cloud 3D Printing Information Research“. Academic Journal of Science and Technology 9, Nr. 3 (12.03.2024): 258–62. http://dx.doi.org/10.54097/b7yjyk73.

Der volle Inhalt der Quelle
Annotation:
3D printing technology, as a major technological change in the global manufacturing industry, has gradually become the trend of The Times. As a service-oriented intelligent manufacturing system, cloud manufacturing has been widely studied by scholars at home and abroad in recent years. This paper takes cloud manufacturing as the carrier, studies the informatization of 3D printing service under cloud environment, elaborates the construction of 3D printing service information model in detail, and instantiates through Agent mapping model. This paper creates an implementation path for cloud 3D printing to provide on-demand precision manufacturing services.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hoppen, Martin, Ralf Waspe, Malte Rast und Juergen Rossmann. „Distributed Information Processing and Rendering for 3D Simulation Applications“. International Journal of Computer Theory and Engineering 6, Nr. 3 (2014): 247–53. http://dx.doi.org/10.7763/ijcte.2014.v6.870.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Takanashi, Ikuko, Shigeru Muraki, Akio Doi und Arie Kaufman. „Visual Information Sensing Technology. 3D Active Net. 3D Volume Extraction.“ Journal of the Institute of Image Information and Television Engineers 51, Nr. 12 (1997): 2097–106. http://dx.doi.org/10.3169/itej.51.2097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yang, X., M. Koehl, P. Grussenmeyer und H. Macher. „COMPLEMENTARITY OF HISTORIC BUILDING INFORMATION MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (15.06.2016): 437–43. http://dx.doi.org/10.5194/isprs-archives-xli-b5-437-2016.

Der volle Inhalt der Quelle
Annotation:
In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yang, X., M. Koehl, P. Grussenmeyer und H. Macher. „COMPLEMENTARITY OF HISTORIC BUILDING INFORMATION MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (15.06.2016): 437–43. http://dx.doi.org/10.5194/isprsarchives-xli-b5-437-2016.

Der volle Inhalt der Quelle
Annotation:
In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

KUWATA, Yoshitaka, Hisamich OHTANI und Ushio INOUE. „Information Visualization System for Disaster Information with 3D Map“. Theory and Applications of GIS 12, Nr. 2 (2004): 123–32. http://dx.doi.org/10.5638/thagis.12.123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Demian, Peter, Kirti Ruikar, Tarun Sahu und Anne Morris. „Three-Dimensional Information Retrieval (3DIR)“. International Journal of 3-D Information Modeling 5, Nr. 1 (Januar 2016): 67–78. http://dx.doi.org/10.4018/ij3dim.2016010105.

Der volle Inhalt der Quelle
Annotation:
An increasing amount of information is packed into BIMs, with the 3D geometry serving as a central index leading to other information. The 3DIR project investigates information retrieval from such environments. Here, the 3D visualization can be exploited when formulating queries, computing the relevance of information items, or visualizing search results. The need for such a system was specified using workshops with end users. A prototype was built on a commercial BIM platform. Following an evaluation, the system was enhanced to exploit model topology. Relationships between 3D objects are used to widen the search, whereby relevant information items linked to a related 3D object (rather than linked directly to objects selected by the user) are still retrieved but ranked lower. An evaluation of the enhanced prototype demonstrates its effectiveness but highlights its added complexity. Care needs to be taken when exploiting topological relationships, but that a tight coupling between text-based retrieval and the 3D model is generally effective in information retrieval from BIMs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Liu, Zhengwei, Alex Wozniakowski und Arthur M. Jaffe. „Quon 3D language for quantum information“. Proceedings of the National Academy of Sciences 114, Nr. 10 (06.02.2017): 2497–502. http://dx.doi.org/10.1073/pnas.1621345114.

Der volle Inhalt der Quelle
Annotation:
We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of theC∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Klasen, Morris, und Volker Steinhage. „Improving wildlife tracking using 3D information“. Ecological Informatics 68 (Mai 2022): 101535. http://dx.doi.org/10.1016/j.ecoinf.2021.101535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Rahadianti, Laksmita. „3D Information from Scattering Media Images“. Jurnal Ilmu Komputer dan Informasi 14, Nr. 1 (28.02.2021): 73–82. http://dx.doi.org/10.21609/jiki.v14i1.963.

Der volle Inhalt der Quelle
Annotation:
Scattering media environments are real-world conditions that occur often, in daily life. Some examples of scattering media are haze, fog, and other bad weather conditions. In these environments, micro-particles in the surrounding media interfere with light propagation and image formation. Thus, images that are captured in these scattering media environments will suffer from low contrast and loss of intensity. This becomes an issue for computer vision methods that employ features found in the scene. To solve this issue, many approaches must estimate the corresponding clear scene prior to further processing. However, the image formation model in scattering media shows potential 3D distance information about the scene encoded implicitly in image intensities. In this paper, we investigate the potential information that can be extracted directly from the scattering media images. We demonstrate the possibility of extracting relative depth in the form of transmission as well as explicit depth maps from single images.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Robertson, George G., Stuart K. Card und Jack D. Mackinlay. „Information visualization using 3D interactive animation“. Communications of the ACM 36, Nr. 4 (April 1993): 57–71. http://dx.doi.org/10.1145/255950.153577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Reitz, T., und S. Schubiger-Banz. „The Esri 3D city information model“. IOP Conference Series: Earth and Environmental Science 18 (25.02.2014): 012172. http://dx.doi.org/10.1088/1755-1315/18/1/012172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Panin, Giorgio, und Alois Knoll. „Mutual Information-Based 3D Object Tracking“. International Journal of Computer Vision 78, Nr. 1 (10.10.2007): 107–18. http://dx.doi.org/10.1007/s11263-007-0083-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Szymczyk, Piotr. „Obtaining 3D information from 2D images“. ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA 1, Nr. 6 (05.06.2014): 49–52. http://dx.doi.org/10.15199/ele-2014-041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ji, Yonghoon, Atsushi Yamashita und Hajime Asama. „Automatic Camera Pose Estimation Based on Textured 3D Map Information“. Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2015.6 (2015): 100–101. http://dx.doi.org/10.1299/jsmeicam.2015.6.100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kamolrat, B., W. A. C. Fernando und M. Mrak. „3D motion estimation for depth information compression in 3D-TV applications“. Electronics Letters 44, Nr. 21 (2008): 1244. http://dx.doi.org/10.1049/el:20081455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Suziedelyte Visockiene, J., und E. Tumeliene. „ANALYSIS OF DIFFERENCES IN 3D BUILDING INFORMATION MODELING“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-5/W2 (20.09.2019): 65–69. http://dx.doi.org/10.5194/isprs-archives-xlii-5-w2-65-2019.

Der volle Inhalt der Quelle
Annotation:
<p><strong>Abstract.</strong> The implementation of Building Information Modelling (BIM) in each project, which is planned, have a design and construction stages. In the construction stage the objects are modelled by architects, engineers, and surveyors. Modelling process allowed to construct a BIM, which replaces two-dimensional (2D) building information into a three-dimensional (3D). Noticed that 3D BIM created by surveyors is not the same as 3D BIM, which is created by architects. Therefore, the purpose of this study is to identify the differences of the created 2D draftings made by 3D models between surveyors and architect’s. The surveyors make their model by using Unnamed Aerial Vehicle (UAV) system: Airborne Drone Data and Data photogrammetric processing technology. The 3D models accuracy is assessed by UAV images processing. The 3D information should be used to calculate façade geometry, volume, distances, contours, which are in the shadowed side of the house, and create 2D façade draftings. Traditionally, architects used 2D building’s façade draftings for pre-design in Construction Projects (CP). 3D architectural model is created by using structural 2D draftings created with Autodesk software. The architectural 3D model is more convenient for the general design and the visual view, it is easily to evaluate the impact of the changes that will be made. The 3D architectural model helps to finish a project at a low cost and also to evaluate the effect of the changes made. The 3D model from surveys measurements shows real view of an object (with deformations), meanwhile the 3D model from architects is a corrected image. Discrepancies between surveyors and architect’s 2D models made by 3D virtual reality (VR) are analysed in this article.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Karmouni, Hicham, Tarik Jahid, Mhamed Sayyouri, Rachid El Alami und Hassan Qjidaa. „Fast 3D image reconstruction by cuboids and 3D Charlier’s moments“. Journal of Real-Time Image Processing 17, Nr. 4 (03.01.2019): 949–65. http://dx.doi.org/10.1007/s11554-018-0846-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Chiba, Shigeru, Akihiko Minamino und Tomoki Suizu. „High-precision Management of 3D Location Information of Underground Facilities by Using High-precision 3D Geospatial Information“. NTT Technical Review 19, Nr. 1 (Januar 2021): 56–61. http://dx.doi.org/10.53829/ntr202101fa9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Li, Zhixin, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang und Ren Wang. „Reconstruction of 3D Information of Buildings from Single-View Images Based on Shadow Information“. ISPRS International Journal of Geo-Information 13, Nr. 3 (20.02.2024): 62. http://dx.doi.org/10.3390/ijgi13030062.

Der volle Inhalt der Quelle
Annotation:
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and expensive for low-cost 3D reconstruction of expansive urban scenes. Addressing this challenge, our study proposes a novel approach to leveraging single-view remote sensing images. By integrating shadow information with deep learning networks, our method measures building height and employs a semantic segmentation technique for single-image high-rise building reconstruction. In addition, we have designed complex shadow measurement algorithms and building contour correction algorithms to improve the accuracy of building models in conjunction with our previous research. We evaluate the method’s precision, time efficiency, and applicability across various data sources, scenarios, and scales. The results demonstrate the rapid and accurate acquisition of 3D building data with maintained geometric accuracy (mean error below 5 m). This approach offers an economical and effective solution for large-scale urban modeling, bridging the gap in cost-efficient 3D reconstruction techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Čiegis, Raimondas. „Parallel Numerical Algorithms for 3D Parabolic Problem with Nonlocal Boundary Condition“. Informatica 17, Nr. 3 (01.01.2006): 309–24. http://dx.doi.org/10.15388/informatica.2006.140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kaminskas, Vytautas, Egidijus Vaškevičius und Aušra Vidugirienė. „Modeling Human Emotions as Reactions to a Dynamical Virtual 3D Face“. Informatica 25, Nr. 3 (01.01.2014): 425–37. http://dx.doi.org/10.15388/informatica.2014.22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhang, Yingchun, Jianbo Huang und Siwen Duan. „3D video conversion system based on depth information extraction“. MATEC Web of Conferences 232 (2018): 02048. http://dx.doi.org/10.1051/matecconf/201823202048.

Der volle Inhalt der Quelle
Annotation:
3D movies have received more and more attention in recent years. However, the investment in making 3D movies is high and difficult, which restricts its development. And there are many existing 2D movie resources, and how to convert it into 3D movies is also a problem. Therefore, this paper proposes a 3D video conversion system based on depth information extraction. The system consists of four parts: segmentation of movie video frame sequences, extraction of frame image depth information, generation of virtual multi-viewpoint and synthesis of 3D video. The system can effectively extract the depth information of the movie and by it finally convert a 2D movie into a 3D movie.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Yan Xing, 邢妍, und 王琼华 Qionghua Wang. „3D information acquisition technology of integral imaging“. Infrared and Laser Engineering 49, Nr. 3 (2020): 303003. http://dx.doi.org/10.3788/irla202049.0303003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Pacheco, Alexander, Holman Bolivar-Baron, Rubén Gonzalez-Crespo und Jordán Pascual-Espada. „Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information“. International Journal of Interactive Multimedia and Artificial Intelligence 2, Nr. 6 (2014): 7. http://dx.doi.org/10.9781/ijimai.2014.261.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Филяк, Петр Юрьевич, Денис Алексеевич Пажинцев, Илья Алексеевич Тырин, Александр Григорьевич Остапенко und Юрий Юрьевич Громов. „3D PRINTERS - REALITY AND FUTURE. ASPECTS OF INFORMATION SECURITY“. ИНФОРМАЦИЯ И БЕЗОПАСНОСТЬ, Nr. 4(-) (25.12.2020): 525–34. http://dx.doi.org/10.36622/vstu.2020.23.4.005.

Der volle Inhalt der Quelle
Annotation:
На сегодняшний день на современном уровне развития технического прогресса человечество разработало множество устройств и способов создания трехмерных тел (объемных тел), каждый из которых имеет как свои преимущества, так и недостатки. Среди этого перечня особого внимания заслуживают устройства, которые имеют целый ряд неоспоримых преимуществ. Во-первых, они позволяют тиражировать трехмерные тела практически в неограниченных количествах. Во-вторых, точность построения объемных фигур очень высока. В-третьих, они позволяют работать с любыми материалами, в зависимости от применения которых, могут получаться различные трехмерные объекты - от реальных строительных объектов - до реальных тканей и органов растительных и живых организмов. Причем объектов, как макроскопических размеров - десятки метров, так и микроскопических, вплоть до нано уровня. Эти устройства вошли в обиход под названием «3D - принтеры». 3D-принтер - это периферийное устройство для создания физического объекта путем послойного формирования его по его цифровой 3D-модели. Данное устройство тесно связано с нашей жизнью. С каждым днем человек находит новое применение для 3D-принтеров, эти устройства уже являются незаменимыми помощниками во многих сферах нашей жизнедеятельности. Создание 3D-принтера, несомненно, является технологическим прорывом. To date, at the current level of technological progress, humanity has developed many devices and ways to create three-dimensional bodies (volume bodies), each of which has both its advantages and disadvantages.khmer body almost unlimited quantities. Secondly, the accuracy of building 3D shapes is very high. Thirdly, they allow you to work with any materials, depending on the use of which, can be obtained a variety of three-dimensional objects - from real construction sites - to real tissues and organs of plant and living organisms. And objects, both macroscopic sizes - tens of meters, and microscopic, up to the nano level. These devices came into use under the name "3D printers." 3D-printer is a peripheral device for creating a physical object by layering it on its digital 3D-model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Phung, Tri Cong, Sungmoon Jin, Han Sang Chae, Hyungpil Moon, Ja Choon Koo und Hyouk Ryeol Choi. „Reconstruction of 3D Local Surface Geometry by Using Minimum Contact Information“. Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2010.5 (2010): 450–55. http://dx.doi.org/10.1299/jsmeicam.2010.5.450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hastings, S. K. „3D Imaging“. Bulletin of the American Society for Information Science and Technology 28, Nr. 2 (31.01.2005): 18–19. http://dx.doi.org/10.1002/bult.230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Murray, Diana, Donald Petrey und Barry Honig. „Integrating 3D structural information into systems biology“. Journal of Biological Chemistry 296 (Januar 2021): 100562. http://dx.doi.org/10.1016/j.jbc.2021.100562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Petrescu, F., M. Aldea, O. Luca, C. Iacoboaea, F. Gaman und E. Parlow. „3D GEO-INFORMATION IN URBAN CLIMATE STUDIES“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W2 (05.10.2016): 51–55. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w2-51-2016.

Der volle Inhalt der Quelle
Annotation:
3D geo-information is essential for urban climate studies. It is obvious that both natural environment and built-up environment play the fundamental role in defining the climatic conditions for urban areas, which affect the quality of human life and human comfort. The paper presents the main categories of 3D geo-information used in urban climate studies and roles in creating and operating the numerical models specially designed to simulate urban planning scenarios and improvement of the urban climate situation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mello, Janaina, und Irla Rocha. „Veritas Mouseion 3d - Technology and Museum Information“. Advanced Computing: An International Journal 4, Nr. 1 (31.01.2013): 1–7. http://dx.doi.org/10.5121/acij.2013.4101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Atazadeh, Behnam, Abbas Rajabifard, Yibo Zhang und Maryam Barzegar. „Querying 3D Cadastral Information from BIM Models“. ISPRS International Journal of Geo-Information 8, Nr. 8 (26.07.2019): 329. http://dx.doi.org/10.3390/ijgi8080329.

Der volle Inhalt der Quelle
Annotation:
There has been significant research on the intersection of 3D cadastre and building information modelling (BIM) over the recent years. BIM provides a multidimensional environment for capturing, curating and communicating the physical and functional aspects during a building’s lifecycle. A BIM-based solution for 3D cadastre provides a rich repository of legal and physical datasets in a common environment. The knowledge encapsulated inside a cadastral BIM model should be tapped to unlock the value of 3D cadastral information. Therefore, this article aims to develop BIM-based queries for interrogating questions about the legal ownership of properties inside multistorey buildings. These queries include identifying legal spaces that belong to a private or common property; querying physical elements that bound a legal space; and finding legal spaces that are adjacent to each other at a specific building element.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gao, Zhao Zhong, und Hai Xia Wei. „Implementation of Urban 3D Geographic Information System“. Advanced Materials Research 926-930 (Mai 2014): 721–24. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.721.

Der volle Inhalt der Quelle
Annotation:
With the digital development of city construction, the construction of three-dimensional Geographic Information System plays an important role for the urban construction planning and decision-making. 3D urban planning geographic information management systems need to be able to put different spatial data, information of urban construction, urban planning information into the same platform. The integration of information resources whick provids a variety of spatial information based on the intelligent application services is the core. This article puts urban planning geographic information management related to business needs in-depth analysis, and put forward a three-dimensional geographic information model which is used for integrated management of data and can be dynamically adjusted for urban planning and management of business processes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kotenev, V. A. „Information-Optical 3D-Techniques for Corrosion Monitoring“. Protection of Metals 40, Nr. 5 (September 2004): 407–20. http://dx.doi.org/10.1023/b:prom.0000043057.69242.29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kim, Young Min, Junghyun Cho und Sang Chul Ahn. „3D Modeling from Photos Given Topological Information“. IEEE Transactions on Visualization and Computer Graphics 22, Nr. 9 (01.09.2016): 2070–81. http://dx.doi.org/10.1109/tvcg.2015.2505307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

IKEGAMI, Masiki, und Yukinori HIRASAWA. „612 Soft 3D-model with inside information“. Proceedings of Conference of Hokkaido Branch 2005.44 (2005): 212–13. http://dx.doi.org/10.1299/jsmehokkaido.2005.44.212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Dixit, Priyesh N., und G. Michael Youngblood. „Discovering 3D Surface Information Values from Gameplayers“. IEEE Computer Graphics and Applications 29, Nr. 2 (März 2009): 30–38. http://dx.doi.org/10.1109/mcg.2009.24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Traumann, A., M. Daneshmand, S. Escalera und G. Anbarjafari. „Accurate 3D measurement using optical depth information“. Electronics Letters 51, Nr. 18 (September 2015): 1420–22. http://dx.doi.org/10.1049/el.2015.1345.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Sheklanova, E. B., M. I. Fokina und I. Yu Denisyuk. „A 3D Cryptographic Information Protective Holographic Element“. Optics and Spectroscopy 125, Nr. 4 (Oktober 2018): 563–65. http://dx.doi.org/10.1134/s0030400x18100235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Luximon, Ameersing, Ravindra S. Goonetilleke und Ming Zhang. „3D foot shape generation from 2D information“. Ergonomics 48, Nr. 6 (15.05.2005): 625–41. http://dx.doi.org/10.1080/0014013050070970.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bak, Slawomir, und François Brémond. „Person re-identification employing 3D scene information“. Journal of Electronic Imaging 24, Nr. 5 (23.10.2015): 051007. http://dx.doi.org/10.1117/1.jei.24.5.051007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Asorey, Jacobo, Martin Crocce, Enrique Gaztañaga und Antony Lewis. „Recovering 3D clustering information with angular correlations“. Monthly Notices of the Royal Astronomical Society 427, Nr. 3 (20.11.2012): 1891–902. http://dx.doi.org/10.1111/j.1365-2966.2012.21972.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Smallman, H. S., M. St. John, H. M. Oonk und M. B. Cowen. „Information availability in 2D and 3D displays“. IEEE Computer Graphics and Applications 21, Nr. 4 (2001): 51–57. http://dx.doi.org/10.1109/38.946631.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie