Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Infinitesimal generator of a Lie group“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Infinitesimal generator of a Lie group" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Infinitesimal generator of a Lie group"
Li, Fu-zhi, Jia-li Yu, Yang-rong Li und Gan-shan Yang. „Lie Group Solutions of Magnetohydrodynamics Equations and Their Well-Posedness“. Abstract and Applied Analysis 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/8183079.
Der volle Inhalt der QuelleTryhuk, V., V. Chrastinová und O. Dlouhý. „The Lie Group in Infinite Dimension“. Abstract and Applied Analysis 2011 (2011): 1–35. http://dx.doi.org/10.1155/2011/919538.
Der volle Inhalt der QuelleAlfaro, Ricardo, und Jim Schaeferle. „Coefficients of prolongations for symmetries of ODEs“. International Journal of Mathematics and Mathematical Sciences 2004, Nr. 51 (2004): 2741–53. http://dx.doi.org/10.1155/s016117120430904x.
Der volle Inhalt der QuelleSchürmann, Michael, und Michael Skeide. „Infinitesimal Generators on the Quantum Group SUq(2)“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, Nr. 04 (Oktober 1998): 573–98. http://dx.doi.org/10.1142/s0219025798000314.
Der volle Inhalt der QuelleCai, J. L., und F. X. Mei. „Conformal Invariance and Conserved Quantity of the Higher-Order Holonomic Systems by Lie Point Transformation“. Journal of Mechanics 28, Nr. 3 (09.08.2012): 589–96. http://dx.doi.org/10.1017/jmech.2012.67.
Der volle Inhalt der QuelleGaur, Manoj, und K. Singh. „Symmetry Classification and Exact Solutions of a Variable Coefficient Space-Time Fractional Potential Burgers’ Equation“. International Journal of Differential Equations 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4270724.
Der volle Inhalt der QuelleNdogmo, J. C. „Some Results on Equivalence Groups“. Journal of Applied Mathematics 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/484805.
Der volle Inhalt der QuelleChepngetich, Winny. „The lie symmetry analysis of third order Korteweg-de Vries equation“. Journal of Physical and Applied Sciences (JPAS) 1, Nr. 1 (01.11.2022): 38–43. http://dx.doi.org/10.51317/jpas.v1i1.299.
Der volle Inhalt der QuelleRay, S. Saha. „Painlevé analysis, group invariant analysis, similarity reduction, exact solutions, and conservation laws of Mikhailov–Novikov–Wang equation“. International Journal of Geometric Methods in Modern Physics 18, Nr. 06 (26.03.2021): 2150094. http://dx.doi.org/10.1142/s0219887821500948.
Der volle Inhalt der QuelleTam, Honwah, Yufeng Zhang und Xiangzhi Zhang. „New Applications of a Kind of Infinitesimal-Operator Lie Algebra“. Advances in Mathematical Physics 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/7639013.
Der volle Inhalt der QuelleDissertationen zum Thema "Infinitesimal generator of a Lie group"
Ouknine, Anas. „Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Der volle Inhalt der QuelleThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Adamo, Maria Stella. „Representable functionals and derivations on Banach quasi *-algebras“. Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4117.
Der volle Inhalt der QuelleFredericks, E. „Conservation laws and their associated symmetries for stochastic differential equations“. Thesis, 2009. http://hdl.handle.net/10539/6980.
Der volle Inhalt der QuelleBuchteile zum Thema "Infinitesimal generator of a Lie group"
Iliopoulos, J., und T. N. Tomaras. „Elements of Classical Field Theory“. In Elementary Particle Physics, 24–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.003.0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Infinitesimal generator of a Lie group"
Pokas, S., und I. Bilokobylskyi. „Lie group of the second degree infinitesimal conformal transformations in a symmetric Riemannian space of the first class“. In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’21. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0100808.
Der volle Inhalt der QuelleRico, J. M., J. J. Cervantes, A. Tadeo, J. Gallardo, L. D. Aguilera und C. R. Diez. „Infinitesimal Kinematics Methods in the Mobility Determination of Kinematic Chains“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86489.
Der volle Inhalt der QuelleLerbet, Jean. „Stability of Singularities of a Kinematical Chain“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84126.
Der volle Inhalt der QuelleZhang, Liping, und Jian S. Dai. „Genome Reconfiguration of Metamorphic Manipulators Based on Lie Group Theory“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49906.
Der volle Inhalt der QuelleNorbach, Alexandra, Kotryna Bedrovaite Fjetland, Gina Vikum Hestetun und Thomas J. Impelluso. „Gyroscopic Wave Energy Generator for Fish Farms and Rigs“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86188.
Der volle Inhalt der QuelleLee, Chung-Ching, und Jacques M. Hervé. „New Schoenflies-Motion Manipulator Implementing Isosceles Triangle and Delassus Parallelogram“. In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20343.
Der volle Inhalt der QuelleLee, Chung-Ching, und Jacques M. Hervé. „Homokinetic Shaft-Coupling Mechanisms via Double Schoenflies-Motion Generators“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34517.
Der volle Inhalt der QuelleChangizi, M. Amin, Ali Abolfathi und Ion Stiharu. „MEMS Wind Speed Sensor: Large Deflection of Curved Micro-Cantilever Beam Under Uniform Horizontal Force“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50560.
Der volle Inhalt der QuelleKorsvik, Håkon B., Even S. Rognsvåg, Tore H. Tomren, Joakim F. Nyland und Thomas J. Impelluso. „Dual Gyroscope Wave Energy Converter“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10266.
Der volle Inhalt der QuelleTaves, Jay, Alexandra Kissel und Dan Negrut. „Dwelling on the Connection Between SO(3) and Rotation Matrices in Rigid Multibody Dynamics – Part 1: Description of an Index-3 DAE Solution Approach“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-72057.
Der volle Inhalt der Quelle