Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Infinite-layer nickelates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Infinite-layer nickelates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Infinite-layer nickelates"
Nomura, Yusuke, und Ryotaro Arita. „Superconductivity in infinite-layer nickelates“. Reports on Progress in Physics 85, Nr. 5 (28.03.2022): 052501. http://dx.doi.org/10.1088/1361-6633/ac5a60.
Der volle Inhalt der QuelleLu, H., M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y. Wang et al. „Magnetic excitations in infinite-layer nickelates“. Science 373, Nr. 6551 (08.07.2021): 213–16. http://dx.doi.org/10.1126/science.abd7726.
Der volle Inhalt der QuelleJi, Yaoyao, Junhua Liu, Lin Li und Zhaoliang Liao. „Superconductivity in infinite layer nickelates“. Journal of Applied Physics 130, Nr. 6 (14.08.2021): 060901. http://dx.doi.org/10.1063/5.0056328.
Der volle Inhalt der QuelleGabay, Marc, Stefano Gariglio und Jean-Marc Triscone. „Functionally doped infinite-layer nickelates“. Nature Materials 21, Nr. 2 (Februar 2022): 139–40. http://dx.doi.org/10.1038/s41563-021-01163-4.
Der volle Inhalt der QuelleLin, Hai, Dariusz Jakub Gawryluk, Yannick Maximilian Klein, Shangxiong Huangfu, Ekaterina Pomjakushina, Fabian von Rohr und Andreas Schilling. „Universal spin-glass behaviour in bulk LaNiO2, PrNiO2 and NdNiO2“. New Journal of Physics 24, Nr. 1 (01.01.2022): 013022. http://dx.doi.org/10.1088/1367-2630/ac465e.
Der volle Inhalt der QuelleHirsch, J. E., und F. Marsiglio. „Hole superconductivity in infinite-layer nickelates“. Physica C: Superconductivity and its Applications 566 (November 2019): 1353534. http://dx.doi.org/10.1016/j.physc.2019.1353534.
Der volle Inhalt der QuelleLi, Yueying, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu und Yuefeng Nie. „Synthesis of Chemically Sharp Interface in NdNiO3/SrTiO3 Heterostructures“. Chinese Physics Letters 40, Nr. 7 (01.06.2023): 076801. http://dx.doi.org/10.1088/0256-307x/40/7/076801.
Der volle Inhalt der QuelleJin, Hyo-Sun, Warren E. Pickett und Kwan-Woo Lee. „A d 8 anti-Hund’s singlet insulator in an infinite-layer nickelate“. Journal of Physics: Materials 5, Nr. 2 (01.04.2022): 024008. http://dx.doi.org/10.1088/2515-7639/ac6040.
Der volle Inhalt der QuelleZhang, Yajun, Xu He und Philippe Ghosez. „Magnetic excitations in infinite-layer LaNiO2“. Applied Physics Letters 122, Nr. 15 (10.04.2023): 152401. http://dx.doi.org/10.1063/5.0141039.
Der volle Inhalt der QuellePtok, Andrzej, Surajit Basak, Przemysław Piekarz und Andrzej M. Oleś. „Influence of f Electrons on the Electronic Band Structure of Rare-Earth Nickelates“. Condensed Matter 8, Nr. 1 (08.02.2023): 19. http://dx.doi.org/10.3390/condmat8010019.
Der volle Inhalt der QuelleDissertationen zum Thema "Infinite-layer nickelates"
Raji, Aravind. „Exploring the electronic and structural properties of tantalates and infinite-layer nickelates via electron microscopy and x-ray spectroscopy approaches“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP116.
Der volle Inhalt der QuelleMaterial systems such as transition metal oxides (TMO) exhibits robust functionalities, strongly coupled with its electronic and structural degrees of freedom. One can stabilize novel TMO structures hosting novel properties by controlling these degrees of freedom, as is the case of superconducting infinite-layer (IL) nickelates, two-dimensional electron gases (2DEGs) in KTaO₃, etc. In this thesis, a combination of complementary techniques has been employed that is the scanning transmission electron microscopy (STEM)- electron energy loss spectroscopy (EELS), four dimensional (4D)-STEM, hard X-ray photoemission spectroscopy (HAXPES) and complementary ab-initio calculations and X-ray scattering experiments to elucidate the origins of the complex physics exhibited by these systems. This thesis begins by exploring the origins of competing orders such as the 3a₀ periodic charge order in IL-nickelates, observed in X-ray scattering experiments. Here, through a combined analysis with STEM-EELS, 4D-STEM and HAXPES, this particular ordering was found to be originating from a particular {303}pc ordering of oxygen vacancies in the nickelate thin-film. Further exploration resulted in the discovery of a new valence ordered and tri-component coordinated nickelate phase with the formula A₉B₉O₂₂, that is an intermediate between the parent perovskite and reduced IL-nickelate. Considering the possible contribution of the substrate thin film interface nanostructure to the superconductivity, a combined study with STEM-EELS, 4D-STEM, HAXPES and ab-initio calculations of the interface was done. It was found that there are highly different n-type and p-type interfaces exists in superconducting samples. This non-universality of interface nanostructure in superconducting IL-nickelate samples, decoupled the interface influence and superconductivity in IL-nickelates. This generated interest in studying an oxide interface, where the interface is superconducting, and in the followed part, the superconducting 2DEGs in AlOₓ/KTaO₃ was explored. The electronic and structural aspect of the AlOₓ/KTaO₃ interface controlling the 2DEG was studied using STEM-EELS and HAXPES. A real space map of the 2DEG was obtained, along with indications of a significant unit cell expansion in this region. Layer resolved standing wave (SW)-HAXPES also indicated a substantial polar like displacement for the reduced Ta atoms at the interface. While this thesis explores the structural and electronic aspects of specific systems, the combined approach using electrons (STEM-EELS, 4D-STEM) and X-rays (HAXPES) can be applied to a wide range of TMO systems. It can unravel the origins of complex properties exhibited by them
Adhikary, Priyo. „Superconductivity in strongly correlated systems: Heavy fermions, Cuprates, Infinite-layer Nickelates“. Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5570.
Der volle Inhalt der QuelleBuchteile zum Thema "Infinite-layer nickelates"
LaBollita, Harrison. „Conductivity of Infinite-Layer Nickelate as a Probe of Spectator Bands“. In Springer Theses, 73–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71548-8_6.
Der volle Inhalt der Quelle