Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Infections à Pseudomonas aeruginosa – Thérapeutique.

Zeitschriftenartikel zum Thema „Infections à Pseudomonas aeruginosa – Thérapeutique“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Le Berre, R., K. Faure, S. Nguyen, M. Pierre, F. Ader und B. Guery. „Quorum sensing : une nouvelle cible thérapeutique pour Pseudomonas aeruginosa“. Médecine et Maladies Infectieuses 36, Nr. 7 (Juli 2006): 349–57. http://dx.doi.org/10.1016/j.medmal.2006.01.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bedos, J. P. „Stratégies thérapeutiques dans les infections à Pseudomonas aeruginosa“. Annales Françaises d'Anesthésie et de Réanimation 22, Nr. 6 (Juni 2003): 534–38. http://dx.doi.org/10.1016/s0750-7658(03)00167-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Aristide KOUDOU, Amian, Solange KAKOU-NGAZOA, Audrey ADDABLAH, Kouadio Bernard ALLALI, Serge AOUSSI, Hortense ATTA DiALLO und Mireille DOSSO. „Biocontrôle de l’infection à Pseudomonas aeruginosa multi-résistant par les bactériophages en aquaculture en Côte d’Ivoire“. Journal of Applied Biosciences 154 (31.10.2020): 15940–49. http://dx.doi.org/10.35759/jabs.154.10.

Der volle Inhalt der Quelle
Annotation:
Objectif : Cette étude a pour objectif d’évaluer la réduction de l’infection à Pseudomonas aeruginosa par les bactériophages en aquaculture Méthodologie et résultats : Le phage (PaBor1a) de la bio-collection des phages de l’Institut Pasteur de Côte d’Ivoire et la souche Pseudomonas aeruginosa (PA001-2018) multi-résistante isolée des poissons piscicoles ont été utilisés pour cette étude. D’une part dans les conditions in vitro, 100 µl d’une solution de phage (108 UFP) et de PA001-2018 ont été mis en culture dans 5 ml de bouillon Luria Bethani pendant 24 h. D’autre part dans les conditions in vivo, un aquarium de 5 L d’eau contenant 6 poissons (Oreochromis niloticus) a été inoculé avec 100 µl de PA001-2018 et du phage PaBor1a pendant 24 h. En présence du phage, la charge bactérienne a été réduite après 2-4 h dans les tests in vitro et in vivo. La décroissance de la population bactérienne et la croissance de celle du phage ont été parallèlement observée. Ce résultat démontre l’efficacité du phage PaBor1a dans le contrôle de la bactérie PA001- 2018 multi-résistante. Conclusion et applications des résultats: La réduction de la charge bactérienne montre le bio contrôle de l’infection à Pseudomonas aeruginosa par le phage PaBor1a. Ce résultat se propose comme alternative thérapeutique pour la lutte contre les infections bactérienne en aquaculture par la méthode balnéaire Mots clés : aquaculture, Oreochromis niloticus, multi-résistant, phages, Pseudomonas aeruginosa. Koudou et al., J. Appl. Biosci. 2020 Biocontrôle de l’infection à Pseudomonas aeruginosa multi-résistant par les bactériophages en aquaculture en Côte d’Ivoire 15941 Biocontrol of multidrug-resistant Pseudomonas aeruginosa infection by bacteriophages in Cote d’Ivoire aquaculture ABSTRACT Objective: To evaluate the reduction of Pseudomonas aeruginosa multi-resistant infection in aquaculture tests by phage activity. Methodology and Results: The phage (PaBor1a) from the phage bio-collection of the Pasteur Institute of Côte d'Ivoire was used against multi-resistant Pseudomonas aeruginosa (PA001-2018) isolated from aquaculture fish in this study. The test in vitro was conducted by culture of , the phage (108 PFU) and 100 µl of PA001- 2018 in 3 ml of Luria Bethani broth for 24 h. And the test in vivo occurs in aquarium tank of 5 L containing 6 fishes (Oreochromis niloticus), and inoculated with 100 µl of PA001-2018 and phage PaBor1a (108 PFU) for 24 h. The negative tests were conducted without phage PaBor1a under the same conditions. The results shows that the presence of the phage, the bacterial load was reduced after 2- 4 h in both tests. Bacterial decay and phage growth were observed in parallel. This result demonstrates the efficacy of phage PaBor1a against the multidrug resistant PA001- 2018 bacteria in aquarium tank. Conclusion and applications of results: reduction of bacterial load show the bio control of Pseudomonas aeruginosa infection by phage PaBor1a. This result is proposed as a therapeutic alternative in aquaculture against bacterial infection in aquaculture by washing method Keywords: aquaculture, Pseudomonas aeruginosa, multi-resistant, phages
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Meybeck, A., und B. Fantin. „De la colonie microbienne à l’infection chez l’homme : le cas de Pseudomonas aeruginosa, importance thérapeutique“. Antibiotiques 6, Nr. 4 (Dezember 2004): 241–48. http://dx.doi.org/10.1016/s1294-5501(04)94271-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Elien, GYRR, S. Bakayoko, AS Simaga, M. Sissoko, M. Nioumanta, A. Sylla und Et Al. „Profil Microbiologique, Sensibilité Aux Antimicrobiens Et Résultat Du Traitement Des Abcès De Cornée Au CHU-IOTA“. Revue Malienne d'Infectiologie et de Microbiologie 16, Nr. 2 (02.06.2021): 1–5. http://dx.doi.org/10.53597/remim.v16i2.1871.

Der volle Inhalt der Quelle
Annotation:
Introduction : L’abcès de la cornée ou kératite infectieuse ou kératite suppurative se définit comme une infection de la cornée par un germe (bactérie, champignon, parasite) associée à des signes d’inflammation. Il s’agit d’une infiltration purulente du stroma cornéen. Il survient très rarementsur une cornée saine maisapparait plus fréquemmentsur un épithélium cornéen défectueux. L’abcès de la cornée est une urgence diagnostique et thérapeutique pouvant entrainer la perte anatomique et/ou fonctionnelle du globe oculaire ; d’où la réalisation de cette étude dont le but est de contribuer à l’amélioration de la prise en charge de l’abcès de cornée à Bamako. Méthode : il s’agissait d’une étude transversale, analytique et descriptive d’une durée de 16 mois allant de décembre 2019 à avril 2020. Résultats : Durant notre étude, 286 prélèvements bactériologiques étaient revenus positifs sur le total de 472 prélèvements bactériologiques réalisés. Les germes majoritairement isolés étaient Staphylococcus aureus(48,11%) suivi de Pseudomonas aeruginosa (15,19%).l’abcès de cornée constitue l’une des principales causes de la morbidité oculaire et de cécité dans le monde et surtout dans les pays en voie de développement où l’hygiène est insuffisante. Conclusion : Notre étude souligne l’importance de la prise en charge adaptée au cas par cas des abcès de cornée.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dowling, Ruth B., und Robert Wilson. „Pseudomonas Aeruginosa Respiratory Infections“. Clinical Pulmonary Medicine 6, Nr. 5 (September 1999): 278–86. http://dx.doi.org/10.1097/00045413-199909000-00002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mérens, A., P. Jault, L. Bargues und J. D. Cavallo. „Infections à Pseudomonas aeruginosa“. EMC - Maladies infectieuses 10, Nr. 1 (Februar 2013): 1–18. http://dx.doi.org/10.1016/s1166-8598(12)56974-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Veber, B. „Infections inhabituelles à Pseudomonas aeruginosa“. Annales Françaises d'Anesthésie et de Réanimation 22, Nr. 6 (Juni 2003): 539–43. http://dx.doi.org/10.1016/s0750-7658(03)00172-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Moore, D., und M. Nelson. „Pseudomonas aeruginosa infections and HIV.“ Sexually Transmitted Infections 71, Nr. 5 (01.10.1995): 336. http://dx.doi.org/10.1136/sti.71.5.336-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mesaros, N., P. Nordmann, P. Plésiat, M. Roussel-Delvallez, J. Van Eldere, Y. Glupczynski, Y. Van Laethem et al. „Pseudomonas aeruginosa : résistance et options thérapeutiques à l’aube du deuxième millénaire“. Antibiotiques 9, Nr. 3 (September 2007): 189–98. http://dx.doi.org/10.1016/s1294-5501(07)91378-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Thi, Minh Tam Tran, David Wibowo und Bernd H. A. Rehm. „Pseudomonas aeruginosa Biofilms“. International Journal of Molecular Sciences 21, Nr. 22 (17.11.2020): 8671. http://dx.doi.org/10.3390/ijms21228671.

Der volle Inhalt der Quelle
Annotation:
Pseudomonas aeruginosa is an opportunistic human pathogen causing devastating acute and chronic infections in individuals with compromised immune systems. Its highly notorious persistence in clinical settings is attributed to its ability to form antibiotic-resistant biofilms. Biofilm is an architecture built mostly by autogenic extracellular polymeric substances which function as a scaffold to encase the bacteria together on surfaces, and to protect them from environmental stresses, impedes phagocytosis and thereby conferring the capacity for colonization and long-term persistence. Here we review the current knowledge on P. aeruginosa biofilms, its development stages, and molecular mechanisms of invasion and persistence conferred by biofilms. Explosive cell lysis within bacterial biofilm to produce essential communal materials, and interspecies biofilms of P. aeruginosa and commensal Streptococcus which impedes P. aeruginosa virulence and possibly improves disease conditions will also be discussed. Recent research on diagnostics of P. aeruginosa infections will be investigated. Finally, therapeutic strategies for the treatment of P. aeruginosa biofilms along with their advantages and limitations will be compiled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bassetti, Matteo, Antonio Vena, Antony Croxatto, Elda Righi und Benoit Guery. „How to manage Pseudomonas aeruginosa infections“. Drugs in Context 7 (29.05.2018): 1–18. http://dx.doi.org/10.7573/dic.212527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Elmjendel, I., H. Mribah, A. Ben Saad, S. Cheikh Mohamed, I. Touil, S. Joobeur, A. Omrane, S. Blel, N. Rouatbi und A. Elkamel. „Les infections respiratoires à Pseudomonas aeruginosa“. Revue des Maladies Respiratoires 32 (Januar 2015): A167. http://dx.doi.org/10.1016/j.rmr.2014.10.163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Giamarellou, Helen. „Therapeutic guidelines for Pseudomonas aeruginosa infections“. International Journal of Antimicrobial Agents 16, Nr. 2 (Oktober 2000): 103–6. http://dx.doi.org/10.1016/s0924-8579(00)00212-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Tomono, Kazunori. „1. Multidrug Resistant Pseudomonas Aeruginosa Infections“. Nihon Naika Gakkai Zasshi 96, Nr. 11 (2007): 2465–69. http://dx.doi.org/10.2169/naika.96.2465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bertrand, Xavier, Céline Slekovec, Pascal Cholley und Daniel Talon. „Épidémiologie des infections à Pseudomonas aeruginosa“. Revue Francophone des Laboratoires 2011, Nr. 435 (September 2011): 35–40. http://dx.doi.org/10.1016/s1773-035x(11)71100-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lepape, A. „Épidémiologie des infections à Pseudomonas aeruginosa“. Annales Françaises d'Anesthésie et de Réanimation 22, Nr. 6 (Juni 2003): 520–22. http://dx.doi.org/10.1016/s0750-7658(03)00169-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Agger, W. A., und A. Mardan. „Pseudomonas aeruginosa Infections of Intact Skin“. Clinical Infectious Diseases 20, Nr. 2 (01.02.1995): 302–8. http://dx.doi.org/10.1093/clinids/20.2.302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Artenstein, Andrew W., und Alan S. Cross. „Serious Infections Caused by Pseudomonas Aeruginosa“. Journal of Intensive Care Medicine 9, Nr. 1 (Januar 1994): 34–51. http://dx.doi.org/10.1177/088506669400900105.

Der volle Inhalt der Quelle
Annotation:
Over the last 3 decades, Pseudomonas aeruginosa has become a leading cause of infectious morbidity and mortality in certain predisposed patient populations. It primarily affects those with impaired host defenses, and its prevalence in the hospital environment makes it an important nosocomial pathogen. Infection with this organism may result in a broad spectrum of clinical manifestations, many of which may be seen in the intensive care setting. This review focuses on epidemiology, clinical presentations, nad treatment of serious Pseudomonas infections.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Salerian, Alen J. „Burn wound infections and Pseudomonas aeruginosa“. Burns 46, Nr. 1 (Februar 2020): 257–58. http://dx.doi.org/10.1016/j.burns.2019.07.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Spernovasilis, Nikolaos, Mina Psichogiou und Garyfallia Poulakou. „Skin manifestations of Pseudomonas aeruginosa infections“. Current Opinion in Infectious Diseases 34, Nr. 2 (21.01.2021): 72–79. http://dx.doi.org/10.1097/qco.0000000000000717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Besedin, O. M., S. O. Kosulnikov, L. M. Storubel, S. I. Karpenko, S. O. Tarnopolsky, K. V. Kravchenko, A. S. Kudryavtsev, K. O. Sinitsa, G. M. Pundik und L. I. Karpenko. „Infections caused by Pseudomonas aeruginosa isolates in patients of Surgical Infections Department“. Modern medical technologies 41 part 1, Nr. 2 (06.04.2019): 56–60. http://dx.doi.org/10.34287/mmt.2(41).2019.11.

Der volle Inhalt der Quelle
Annotation:
The role of Pseudomonas aeruginosa isolates among the pathogens of surgical infection in purulent-septic surgery department for 2018 is determined. Investigated the antibiotic resistance of Pseudomonas aeruginosa hospital strains and the most effective antibiotics were investigated. Poly resistant in wound material were almost half of the cultures of Pseudomonas aeruginosa (19 strains, 45,2%). Carbapenem resistant Pseudomonas aeruginosa was found to be 47,1%. Of the aminoglycoside group antibiotics, Tobramycin (82,1%) showed the best sensitivity, Amikacin was sensitive in half of the microorganisms tested (55,0%). The sensitivity of cephalosporins ranged from 23,1% (Cefoperazone) to 40,5% (Ceftazidime). Even the use of the Sulbactam protective molecule did not improve the situation: 37,5% (Cefoperazone/ Sulbactam). For fluoroquinolones (Ciprofloxacin) sensitive third part of bacteria only. Piperacillin with Tazobactam, Fosfomycin, and Colistin E showed a high anti-pseudomonad efficacy. The use of anti-diarrhea bacteriophage was ineffective. Keywords: hospital strains, antibiotic resistance, Pseudomonas aeruginosa.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Dorotkiewicz-Jach, Agata, Daria Augustyniak, Tomasz Olszak und Zuzanna Drulis-Kawa. „Modern Therapeutic Approaches Against Pseudomonas aeruginosa Infections“. Current Medicinal Chemistry 22, Nr. 14 (24.04.2015): 1642–64. http://dx.doi.org/10.2174/0929867322666150417122531.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Moore, Nicholas M., und Maribeth L. Flaws. „Epidemiology and Pathogenesis of Pseudomonas aeruginosa Infections“. American Society for Clinical Laboratory Science 24, Nr. 1 (Januar 2011): 43–46. http://dx.doi.org/10.29074/ascls.24.1.43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Elmjendel, I., H. Mribah, A. Ben Saad, S. Joobeur, I. Touil, S. Cheikh Mohamed, A. Omrane, S. Blel, N. Rouatbi und A. Elkamel. „Les infections respiratoires communautaires à Pseudomonas aeruginosa“. Revue des Maladies Respiratoires 32 (Januar 2015): A169—A170. http://dx.doi.org/10.1016/j.rmr.2014.10.171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Tümmler, Burkhard. „Emerging therapies against infections with Pseudomonas aeruginosa“. F1000Research 8 (07.08.2019): 1371. http://dx.doi.org/10.12688/f1000research.19509.1.

Der volle Inhalt der Quelle
Annotation:
Infections with Pseudomonas aeruginosa have been marked with the highest priority for surveillance and epidemiological research on the basis of parameters such as incidence, case fatality rates, chronicity of illness, available options for prevention and treatment, health-care utilization, and societal impact. P. aeruginosa is one of the six ESKAPE pathogens that are the major cause of nosocomial infections and are a global threat because of their capacity to become increasingly resistant to all available antibiotics. This review reports on current pre-clinical and clinical advances of anti-pseudomonal therapies in the fields of drug development, antimicrobial chemotherapy, vaccines, phage therapy, non-bactericidal pathoblockers, outer membrane sensitizers, and host defense reinforcement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Burrows, Lori L. „The Therapeutic Pipeline for Pseudomonas aeruginosa Infections“. ACS Infectious Diseases 4, Nr. 7 (17.05.2018): 1041–47. http://dx.doi.org/10.1021/acsinfecdis.8b00112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Routman, A., W. Van Manen, R. Haddad, B. Pollock, B. Holmes und W. J. Mogabgab. „Cefsulodin Treatment for Serious Pseudomonas aeruginosa Infections“. Journal of International Medical Research 14, Nr. 5 (September 1986): 242–53. http://dx.doi.org/10.1177/030006058601400504.

Der volle Inhalt der Quelle
Annotation:
Cefsulodin, a narrow-spectrum cephalosporin with excellent antipseudomonal activity was used to treat 48 patients with 51 Pseudomonas aeruginosa infections. These included osteomyelitis, infected prostheses, post-operative and post-traumatic superficial wounds, decubitus and stasis ulcers, lower respiratory tract infections and infections of the urinary tract. Many of the patients were compromised by underlying debilitating conditions such as severe trauma, diabetes mellitus, vascular impairment, and abuse of alcohol and drugs. In cases of polymicrobial infections, a concomitant non-antipseudomonal antibiotic was sometimes administered. Cefsulodin was administered intravenously to 47 patients and by intramuscular injections to one individual. The dosage ranged from 0.5 to 2.0 g every six hr and duration of therapy was from 4 to 70 days. A satisfactory clinical response was observed in 88% of the patients. P. aeruginosa was eradicated from 76% of the infection sites. Failures, which included relapse within one year, were generally associated with prior severe trauma or vascular impairment in cases of osteomyelitis. Reinfections and superinfections developed in 12 individuals. Adverse reactions reported for two patients were nausea and vomiting. A third patient had transient increases in alkaline phosphatase and SGOT. These data indicate that cefsulodin is an effective and safe antibiotic in various types of P. aeruginosa infections.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Alionte, L. G., B. M. Cannon, C. D. White, A. R. Caballero, R. J. O'Callaghan und J. A. Hobden. „Pseudomonas aeruginosa LasA protease and corneal infections“. Current Eye Research 22, Nr. 4 (Januar 2001): 266–71. http://dx.doi.org/10.1076/ceyr.22.4.266.5509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Arruda, Erico A. G., Ivan S. Marinho, Marcos Boulos, Sumiko I. Sinto, Helio H. Caiaffa F, Caio M. Mendes, Carmen P. Oplustil, Helio Sader, Carlos E. Levy und Anna S. Levin. „Nosocomial Infections Caused by Multiresistant Pseudomonas aeruginosa“. Infection Control & Hospital Epidemiology 20, Nr. 9 (September 1999): 620–23. http://dx.doi.org/10.1086/501683.

Der volle Inhalt der Quelle
Annotation:
AbstractA case-control study was done to evaluate factors associated with nosocomial infections by multiresistant Pseudomonas aeruginosa (MRPA). Results showed that MRPA was associated with the use of immunosuppressive and antimicrobial drugs. Five typing methods indicated that the MRPA infections were due to multiple strains rather than a single strain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Donta, S. T., P. Peduzzi, A. S. Cross, J. Sadoff, C. Haakenson, S. J. Cryz, C. Kauffman et al. „Immunoprophylaxis against Klebsiella and Pseudomonas aeruginosa Infections“. Journal of Infectious Diseases 174, Nr. 3 (01.09.1996): 537–43. http://dx.doi.org/10.1093/infdis/174.3.537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Scheetz, Marc H., Michael Hoffman, Maureen K. Bolon, Grant Schulert, Wendy Estrellado, Ioannis G. Baraboutis, Padman Sriram, Minh Dinh, Linda K. Owens und Alan R. Hauser. „Morbidity associated with Pseudomonas aeruginosa bloodstream infections“. Diagnostic Microbiology and Infectious Disease 64, Nr. 3 (Juli 2009): 311–19. http://dx.doi.org/10.1016/j.diagmicrobio.2009.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Cornforth, Daniel M., Justine L. Dees, Carolyn B. Ibberson, Holly K. Huse, Inger H. Mathiesen, Klaus Kirketerp-Møller, Randy D. Wolcott, Kendra P. Rumbaugh, Thomas Bjarnsholt und Marvin Whiteley. „Pseudomonas aeruginosa transcriptome during human infection“. Proceedings of the National Academy of Sciences 115, Nr. 22 (14.05.2018): E5125—E5134. http://dx.doi.org/10.1073/pnas.1717525115.

Der volle Inhalt der Quelle
Annotation:
Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium’s primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Eggleston, Mark. „Agents for the Treatment of Pseudomonas aeruginosa Infections“. Infection Control 8, Nr. 9 (September 1987): 380–83. http://dx.doi.org/10.1017/s019594170006745x.

Der volle Inhalt der Quelle
Annotation:
Pseudomonas aeruginosa is the most common pathogen of Pseudomonas species. One of the most virulent organisms pathogenic to man, P aeruginosa can cause a variety of infections in humans. Despite the introduction of many new antimicrobial agents with enhanced activity against P aeruginosa, the high mortality rate associated with the organism over the past two decades continues.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mahmmudi, Z., und A. A. Gorzin. „Biofilm of Pseudomonas aeruginosa in Nosocomial Infection“. Journal of Molecular Biology Research 7, Nr. 1 (09.02.2017): 29. http://dx.doi.org/10.5539/jmbr.v7n1p29.

Der volle Inhalt der Quelle
Annotation:
Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially, biofilm infections where P. aeruginosa plays an important role are described. Subsequently, current insights into the molecular mechanisms involved in P. aeruginosa biofilm formation and the associated antimicrobial tolerance are reviewed. And finally, based on our knowledge about molecular biofilm biology, a number of therapeutic strategies for combat of P. aeruginosa biofilm infections are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Baral, Shankar, Anjila Pokharel, Supram Hosuru Subramanya und Niranjan Nayak. „Clinico-epidemiological profile of Acinetobacter and Pseudomonas infections, and their antibiotic resistant pattern in a tertiary care center, Western Nepal“. Nepal Journal of Epidemiology 9, Nr. 4 (31.12.2019): 804–11. http://dx.doi.org/10.3126/nje.v9i4.26962.

Der volle Inhalt der Quelle
Annotation:
Background: Infections caused by Acinetobacter species and Pseudomonas species, especially multidrug-resistant (MDR) strains pose a serious management challenge with a public health threat. Materials and Methods: A hospital-based retrospective study of patients who were infected with Acinetobacter spp or Pseudomonas aeruginosa was carried out at Manipal Teaching Hospital from 2014 to 2016. Results: A total of 170 cases of infections with Acinetobacter spp. and 313 cases with Pseudomonas aeruginosa were studied. The rate of nosocomial infections was higher than non-nosocomial infections. ICU was found as the major hub for both the organisms; (53.5% of cases due to Acinetobacter spp. and 39.6% due to Pseudomonas aeruginosa). Most isolates were of respiratory tract origin (Acinetobacter 74.7% and Pseudomonas aeruginosa 65.8%). Percentage resistance of Acinetobacter spp. towards polymyxin B was found to be quite low (18.8%). Similarly, resistance rates of Pseudomonas aeruginosa against amikacin were also found to be low, i.e., 17.4%. A higher prevalence of multidrug resistance was seen among Acinetobacter spp than among Pseudomonas aeruginosa (75.9% vs. 60.1%). The hospital stay was longer for patients infected with MDR isolate (p=0.001 for Acinetobacter spp. and p=0.003 for Pseudomonas aeruginosa). The mortality rate was higher in infections due to Acinetobacter spp (15.9%) as compared to Pseudomonas aeruginosa (8.3%). Conclusion: These clinico-epidemiological data will help to implement better infection control strategies. Developing a local antibiogram database will improve the knowledge of antimicrobial resistance patterns in our region, facilitating the treating physician in advocating empiric therapy if need be.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Dmitrieva, N. V., M. V. Eidelshtein, V. V. Aginova, I. N. Perukhova, Z. V. Grigorievskaya, N. S. Bagirova, I. V. Tereshchenko et al. „Nosocomial infections causedby Pseudomonas aeruginosa in cancer clinics“. Siberian journal of oncology 18, Nr. 2 (26.04.2019): 28–34. http://dx.doi.org/10.21294/1814-4861-2019-18-2-28-34.

Der volle Inhalt der Quelle
Annotation:
The purpose of the study was to evaluate the frequency of isolation of multi-resistant Pseudomonas aeruginosa and identify the mechanisms of resistance to carbapenems.Material and methods. We analyzed 866 strains of Pseudomonos aeruginosaisolated from clinical samples from cancer patients in the period 2014–2016. the level of resistance to piperacillin/tazobactam, ceftazidime, cefepime, imipenem, meropenem, ciprofloxacin, amikacin in dynamics was determined. carbapenem-resistant (car-R) strains were examined for the presence of enzymes.Results. Between 2014 and 2016, the number of strains resistant to piperacillin/tazobactam was 20.1–12.9 %, to ceftazidime – 33.0–32.9 %, to cefepime – 25.6–32.9 %, ciprofloxacin – 36.8–43.8 %, amikacin – 23.8–24.9 %. No statistically significant differences were found (p>0.05). However, an increase in the number of car-R strains from 31.7 to 43.8 % was observed (p<0.05). of 7 strains of P. aeruginosainvestigated for the presence of acquired carbapenemases, the production of metal-beta-lactamase of group Vimwas detected in 2 strains, and class acarbapenemases of the gEs-5 group in one strain.Conclusion. P. aeruginosaresistance to all antibiotic groups did not exceed 50 % and remained almost unchanged for 3 years, with the exception of the increase in car-R strains. three out of 7 (42.9 %) carbapenem-resistant strains were genetically stable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

T. Rybtke, Morten, Peter O. Jensen, Niels Hoiby, Michael Givskov, Tim Tolker-Nielsen und Thomas Bjarnsholt. „The Implication of Pseudomonas aeruginosa Biofilms in Infections“. Inflammation & Allergy - Drug Targets 10, Nr. 2 (01.04.2011): 141–57. http://dx.doi.org/10.2174/187152811794776222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Moore, Nicholas M., und Maribeth L. Flaws. „Treatment Strategies and Recommendations for Pseudomonas aeruginosa Infections“. American Society for Clinical Laboratory Science 24, Nr. 1 (Januar 2011): 52–56. http://dx.doi.org/10.29074/ascls.24.1.52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Nishimura, Tadafumi. „Antimicrobial Chemotheraphy of Infections due to Pseudomonas aeruginosa“. Pediatrics International 28, Nr. 4 (Oktober 1986): 470–78. http://dx.doi.org/10.1111/j.1442-200x.1986.tb00750.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Roberts, Scott C., Hannah H. Nam, Rebecca N. Kumar, Teresa Zembower, Chao Qi, Michael Malczynski, Jonathan D. Rich, Amit A. Pawale, Rebecca S. Harap und Valentina Stosor. „584. Ventricular assist device infections with Pseudomonas aeruginosa“. Open Forum Infectious Diseases 7, Supplement_1 (01.10.2020): S356. http://dx.doi.org/10.1093/ofid/ofaa439.778.

Der volle Inhalt der Quelle
Annotation:
Abstract Background Infection is a leading cause of morbidity and mortality in ventricular assist device (VAD) recipients. Pseudomonas aeruginosa (PA) is the second most common organism implicated in VAD infections, occurring in 10–50% of infections. The epidemiology of VAD recipients with PA infection are poorly described. Methods We identified patients (pts) at Northwestern Memorial Hospital with a VAD-specific PA infection from January 1, 2012 to Dec 31, 2019. VADs included the Heartmate II, Heartmate 3, and Heartware HVAD devices. VAD-specific infections were defined according to the 2013 ISHLT Guidelines. Results Seventeen out of 91 (18.7%) VAD infections were due to PA. Infections of the driveline exit site (DLES) occurred most commonly (n=15, 88.2%), followed by pocket (n=2, 11.8%) and pump (n=2, 11.8%) infections. Median time to infection after VAD implantation was 295 days (IQR 154 – 440 days). Eight (47.1%) pt isolates were not fluoroquinolone (FQ) susceptible. Resistance to multiple antibiotic classes was observed in pts in whom serial cultures were obtained. Median antibiotic treatment was 107 days (IQR 55 – 183 days, maximum 775 days). Five (29.4%) pts received FQ monotherapy on initial diagnosis, 3 (60%) of whom required change to a different class for resistance. Surgical debridement and VAD exchange were performed in 5 (29.4%) and 3 (17.6%) pts respectively. Co-pathogens were identified in 9 (52.9%) pts, the most common being Staphylococcus aureus (n=2) and Enterococcus spp (n=2). A total of 5 (29.4%) pts went on to successful heart transplantation; one had recurrent PA infection at the prior DLES requiring prolonged antibiotics and removal of retained DL material. All cause 1-year mortality rate was 11.7% (n = 2), both of whom died from cerebrovascular accidents. Conclusion VAD-specific infections with PA occurred late after device implantation and required prolonged antibiotic courses. Antimicrobial resistance was high at diagnosis and worsened in pts on prolonged therapy. Morbidity and mortality in pts with PA VAD infections were high. The preponderance of DLES infections warrants further study and highlights the need for improvements in DLES care and infection prevention strategies. Disclosures All Authors: No reported disclosures
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Howe, R. „Macrolides for the treatment of Pseudomonas aeruginosa infections?“ Journal of Antimicrobial Chemotherapy 40, Nr. 2 (01.08.1997): 153–55. http://dx.doi.org/10.1093/jac/40.2.153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Langan, Katherine M., Tom Kotsimbos und Anton Y. Peleg. „Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis“. Current Opinion in Infectious Diseases 28, Nr. 6 (Dezember 2015): 547–56. http://dx.doi.org/10.1097/qco.0000000000000217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Petrás, Győzoő, und Maria M. Ádám. „Anti-LPS antibody response in pseudomonas aeruginosa infections“. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. Series A: Medical Microbiology, Infectious Diseases, Virology, Parasitology 259, Nr. 3 (Mai 1985): 397–409. http://dx.doi.org/10.1016/s0176-6724(85)80042-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Harper, D. R., und M. C. Enright. „Bacteriophages for the treatment of Pseudomonas aeruginosa infections“. Journal of Applied Microbiology 111, Nr. 1 (18.04.2011): 1–7. http://dx.doi.org/10.1111/j.1365-2672.2011.05003.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

de Bentzmann, Sophie, und Patrick Plésiat. „The Pseudomonas aeruginosa opportunistic pathogen and human infections“. Environmental Microbiology 13, Nr. 7 (30.03.2011): 1655–65. http://dx.doi.org/10.1111/j.1462-2920.2011.02469.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Bachta, Kelly E. R., Jonathan P. Allen und Alan R. Hauser. „2566. infection Dynamics of Pseudomonas aeruginosa Bloodstream Infections“. Open Forum Infectious Diseases 6, Supplement_2 (Oktober 2019): S891. http://dx.doi.org/10.1093/ofid/ofz360.2244.

Der volle Inhalt der Quelle
Annotation:
Abstract Background Pseudomonas aeruginosa (PA) is a critically important healthcare-associated pathogen responsible for a variety of infections including bloodstream infection (bacteremia), pneumonia, and urinary tract infection. PA bacteremia is a significant cause of morbidity and mortality, especially in immunocompromised patients; However, little is known about the in-host infection dynamics of PA bacteremia and the impact of individually infected patients on transmission in the healthcare environment. Methods We utilized animal modeling in conjunction with sequencing technology to dissect the infection dynamics of PA bloodstream infections. BALB/c mice were challenged intravenously with a human bacteremia isolate, PABL012. At various time points post infection, organs were harvested and the surviving PA enumerated. In parallel, PABL012 engineered to express the luciferase cassette was used to track PA in live mice over time using the IVIS imaging system. STAMP (sequence tag-based analysis of microbial populations) analysis was then applied to define the population dynamics of PA bloodstream infection. Results Bacterial enumeration and IVIS imaging revealed that systemically infected mice have a focus of bacterial expansion in their gallbladders (GB). Surprisingly, the same mice also shed PA in their gastrointestinal tract (GI), a phenomenon not previously appreciated following bloodstream infection. Finally, STAMP analysis revealed that (1) PA experiences a severe in vivo bottleneck when trafficking to the GB, (2) the population in the GB expands tremendously during infection and (3) this population is ultimately the source of excreted bacteria in the GI tract. Conclusion Our research, using murine models, provides the first evidence that the GB acts as a sanctuary site for PA replication following systemic infection and links replication with fecal excretion. Fecal excretion of PA from hospitalized patients is observed, but the direct link between acute infection, GI shedding, and transmission remains unclear. Our observations have significant implications on understanding how PA evades initial host clearance, the identity of protected expansion niches, and how PA might exit the human host in the healthcare environment facilitating a transmission event. Disclosures All authors: No reported disclosures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

He, Jianchun, Xiaojiong Jia, Shuangshuang Yang, Xiuyu Xu, Kunling Sun, Congya Li, Tianxiang Yang und Liping Zhang. „Heteroresistance to carbapenems in invasive Pseudomonas aeruginosa infections“. International Journal of Antimicrobial Agents 51, Nr. 3 (März 2018): 413–21. http://dx.doi.org/10.1016/j.ijantimicag.2017.10.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Buret, Andre. „Pseudomonas aeruginosa Infections in Patients with Cystic Fibrosis“. Clinical Immunotherapeutics 2, Nr. 4 (Oktober 1994): 261–77. http://dx.doi.org/10.1007/bf03258527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Bilikova, Eva, Bashir M. Hafed, Gabriela Kovacicova, Jana Koprnova, Ivor Svetlansky, Vladimir Krcmery, Darina Chovancova, Mària Huttova und Ivor Svetlansky. „Nosocomial infections due to Pseudomonas aeruginosa in neonates“. Journal of Infection and Chemotherapy 9, Nr. 2 (2003): 191–93. http://dx.doi.org/10.1007/s10156-003-0241-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie