Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Infections à Pseudomonas aeruginosa – Thérapeutique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique"
Le Berre, R., K. Faure, S. Nguyen, M. Pierre, F. Ader und B. Guery. „Quorum sensing : une nouvelle cible thérapeutique pour Pseudomonas aeruginosa“. Médecine et Maladies Infectieuses 36, Nr. 7 (Juli 2006): 349–57. http://dx.doi.org/10.1016/j.medmal.2006.01.008.
Der volle Inhalt der QuelleBedos, J. P. „Stratégies thérapeutiques dans les infections à Pseudomonas aeruginosa“. Annales Françaises d'Anesthésie et de Réanimation 22, Nr. 6 (Juni 2003): 534–38. http://dx.doi.org/10.1016/s0750-7658(03)00167-9.
Der volle Inhalt der QuelleAristide KOUDOU, Amian, Solange KAKOU-NGAZOA, Audrey ADDABLAH, Kouadio Bernard ALLALI, Serge AOUSSI, Hortense ATTA DiALLO und Mireille DOSSO. „Biocontrôle de l’infection à Pseudomonas aeruginosa multi-résistant par les bactériophages en aquaculture en Côte d’Ivoire“. Journal of Applied Biosciences 154 (31.10.2020): 15940–49. http://dx.doi.org/10.35759/jabs.154.10.
Der volle Inhalt der QuelleMeybeck, A., und B. Fantin. „De la colonie microbienne à l’infection chez l’homme : le cas de Pseudomonas aeruginosa, importance thérapeutique“. Antibiotiques 6, Nr. 4 (Dezember 2004): 241–48. http://dx.doi.org/10.1016/s1294-5501(04)94271-9.
Der volle Inhalt der QuelleElien, GYRR, S. Bakayoko, AS Simaga, M. Sissoko, M. Nioumanta, A. Sylla und Et Al. „Profil Microbiologique, Sensibilité Aux Antimicrobiens Et Résultat Du Traitement Des Abcès De Cornée Au CHU-IOTA“. Revue Malienne d'Infectiologie et de Microbiologie 16, Nr. 2 (02.06.2021): 1–5. http://dx.doi.org/10.53597/remim.v16i2.1871.
Der volle Inhalt der QuelleDowling, Ruth B., und Robert Wilson. „Pseudomonas Aeruginosa Respiratory Infections“. Clinical Pulmonary Medicine 6, Nr. 5 (September 1999): 278–86. http://dx.doi.org/10.1097/00045413-199909000-00002.
Der volle Inhalt der QuelleMérens, A., P. Jault, L. Bargues und J. D. Cavallo. „Infections à Pseudomonas aeruginosa“. EMC - Maladies infectieuses 10, Nr. 1 (Februar 2013): 1–18. http://dx.doi.org/10.1016/s1166-8598(12)56974-7.
Der volle Inhalt der QuelleVeber, B. „Infections inhabituelles à Pseudomonas aeruginosa“. Annales Françaises d'Anesthésie et de Réanimation 22, Nr. 6 (Juni 2003): 539–43. http://dx.doi.org/10.1016/s0750-7658(03)00172-2.
Der volle Inhalt der QuelleMoore, D., und M. Nelson. „Pseudomonas aeruginosa infections and HIV.“ Sexually Transmitted Infections 71, Nr. 5 (01.10.1995): 336. http://dx.doi.org/10.1136/sti.71.5.336-a.
Der volle Inhalt der QuelleMesaros, N., P. Nordmann, P. Plésiat, M. Roussel-Delvallez, J. Van Eldere, Y. Glupczynski, Y. Van Laethem et al. „Pseudomonas aeruginosa : résistance et options thérapeutiques à l’aube du deuxième millénaire“. Antibiotiques 9, Nr. 3 (September 2007): 189–98. http://dx.doi.org/10.1016/s1294-5501(07)91378-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique"
Alexandre, Youenn. „Développement d'une application oropharyngée de lactobacilles pour lutter contre les infections respiratoires à Pseudomonas aeruginosa“. Thesis, Brest, 2014. http://www.theses.fr/2014BRES0046/document.
Der volle Inhalt der QuellePseudomonas aeruginosa is an opportunistic pathogen that causes pneumonia and which is involved in themortality of mechanically-ventilated or cystic fibrosis patients.These infections are difficult to treat because of the existence of many antibiotic resistances in P. aeruginosa and therapeutic alternatives are needed. Our hypothesis was that the use of probiotics could be an alternative to antibiotic therapy in order to reduce P. aeruginosa infections and its injurious and pro-inflammatory effects in lungs.The main goal of this work was to evaluate the effects of lactobacilli in a murine model of P. aeruginosa pneumonia.The first step of this work was to screen lactobacilli isolated from oral cavities of healthy volunteers against biofilmformation and elastolytic activity of P. aeruginosa PAO1. The effects of selected lactobacilli were then evaluated in amodel of infection of lung epithelial cells by P. aeruginosa PAO1 and in a murine model of P. aeruginosa PAO1pneumonia. Eighty-seven lactobacilli were tested in vitro, leading to the selection of 3 and 5 strains respectively active against biofilm formation and elastolytic activity. The most active strains (L. fermentum K.C6.3.1E, L. paracasei ES.D.88and L. zeae Od.76) toward biofilm formation and elastolytic activity were chosen to be tested in vitro, in a cell model of P. aeruginosa PAO1 infection. This mix showed cytoprotective effect against P. aeruginosa PAO1. Finally, the prophylactic intratracheal administration of the mix of lactobacilli in mice allowed to reduce the pulmonary loads in P.aeruginosa PAO1. In the same time, the pro-inflammatory effects(IL-6 and TNF- α) of the infection were reduced. These promising results suggest the possibility of new therapeutic applications for probiotics
Fangous, Marie-Sarah. „Nouvelle thérapeutique anti-Pseudomonas aeruginosa dans la mucoviscidose : les Lactobacillus spp. Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice – a proof of concept, in Beneficial Microbes 10 (8), December 2019 Prevalence and dynamics of Lactobacillus sp. in the lower respiratory tract of patients with cystic fibrosis, in Research in Microbiology 169 (4-5), May-June 2018“. Thesis, Brest, 2019. http://www.theses.fr/2019BRES0056.
Der volle Inhalt der QuelleThe alarming increase in antibiotic resistance of Pseudomonas aeruginosa (PA) requires studying alternative therapies, such as Lactobacillus. In this thesis, several studies were carried out:1) In a murine model of acute PA pneumonia, we have demonstrated the beneficial effect of intratracheal administration of a mixture of three Lactobacillus strains from milk or the oral cavity of healthy patients.2) We then prospectively studied the Lactobacillus population in sputum of patients with cystic fibrosis (CF). The average prevalence of carry was 61%.3) Lactobacillus from the respiratory ecosystem of CF patients were used to establish two mixtures of 3 Lactobacillus strains. Strains were selected for their antielastolytic and anti-pyocyanin effects in vitro.Intranasal administration of these mixtures to C57Bl / 6 mice, 18h prior to PAO1 infection significantly improves 7-day survival and pulmonary clearance of PAO1 24h postinfection.A significant decrease in lung neutrophil recruitment and pro-inflammatory cytokines was observed, while the production of IL-10 increased.This thesis demonstrates the beneficial effects of prophylactic respiratory administration of Lactobacillus on acute PA pneumonia. Anti-PA properties in vitro are not an indication of the in vivo activity. The mixture containing L. paracasei 9N, L. brevis 24C, and L. salivarius 20C show the best anti-PA activity (Patent BIO17555). This result is likely related to an immunomodulating effect of these bacteria
Kheir, Saadé. „Etude d'une thérapie cellulaire par transplantation intrapulmonaire de macrophages dans le traitement d'une infection aigue à pseudomonas aeruginosa“. Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7085.
Der volle Inhalt der QuellePseudomonas aeruginosa (P.a) is a Gram-negative bacillus responsible for chronic infections associated with high mortality due to the bacterium's predilection for developing antibiotic resistance and the inefficacy of current therapies. Our group showed in a model of acute infection in mice that Elastase B (LasB), a virulence factor of Pa, degrades the cytokine IL-6 and the antimicrobial molecule Elafine and that the overexpression of these two mediators provides protection to mice by decreasing inflammation and increasing repair. Alveolar macrophages represent the most abundant myeloid population in the alveolar space and play a key role in maintaining homeostasis, initiation and resolution of inflammation. Given their importance, they are very much studied in the development of new approaches to cell therapy. We therefore hypothesized that the alveolar macrophage which is also targeted by P.a and LasB more particularly, may be an adequate tool for the transfer of IL-6- and Elafine-mediated protection. The main objective of this work is to modify the macrophage with adenoviral vectors allowing the overexpression of IL-6 and Elafine, and to use it as a therapeutic tool in an intrapulmonary transplantation model followed by a Pa infection We show that the transfer of genetically modified macrophages with IL-6 and Elafine is protective. Elafine induces in the macrophage an IL6 / IL10 / antimicrobial peptide signature which, in synergy with IL-6, confers a regulatory phenotype to the alveolar unit
Loupias, Pauline. „Synthèse et étude d'analogues de sidérophores à large spectre antibactérien“. Thesis, Amiens, 2020. http://www.theses.fr/2020AMIE0032.
Der volle Inhalt der QuelleThis work consisted in exploiting a new therapeutic strategy to fight Pseudomonas aeruginosa and Burkholderia pseudomallei, two Gram-negative bacteria particularly concerning. While P. aeruginosa, which is part of the ESKAPE bacteria, is responsible for the majority of nosocomial infections, B. pseudomallei, formerly classified in the Pseudomonas group, is involved in Whitmore's disease and is considered by the CDC as a potential bioterrorist weapon. These two pathogens have natural and acquired resistance to many antibiotics by efflux or via a lack of membrane permeability, which makes treatment difficult. Facing this health emergency, the use of the "Trojan Horse" strategy to vectorize antibiotics can help restore their activities. Iron is a micronutrient necessary for the survival of bacteria, but it is not very bioavailable due to its low solubility in water. To acquire it, many bacteria synthesize molecules of low molecular weight, called siderophores, capable of chelating the surrounding iron. The complexes formed are then recognized specifically by TonB-dependent receptors in order to transport iron within bacteria. Depending on their type, bacteria express different receptors recognizing their endogenous siderophores but also xenosiderophores or synthetic siderophores. The use of these different kinds of siderophores to carry an antibiotic or a toxic metal such as gallium into the bacteria has already led to promising results. The objectives of this PhD were to synthesize new siderophores of piperazine structure, new siderophore-antibiotic conjugates and toxic siderophore-gallium complexes. Physico-chemical and biological studies were also carried out in order to validate the interest of the structures chosen in anti-infectious chemotherapy
Lasry, Judith. „Les Pseudomonas aeruginosa dans l'environnement“. Paris 5, 1998. http://www.theses.fr/1998PA05P233.
Der volle Inhalt der QuelleWilton, Alison Jane. „Iron-regulated surface antigens of Pseudomonas aeruginosa“. Thesis, Aston University, 1989. http://publications.aston.ac.uk/12564/.
Der volle Inhalt der QuelleGharse, Sachin. „Antibacterial strategies for improved eradication of Pseudomonas aeruginosa infections“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6110.
Der volle Inhalt der QuelleBretonnière, Cédric. „Pneumonies à Pseudomonas aeruginosa : données expérimentales, pharmacologiques et microbiologiques“. Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=28f04d7c-22a3-4d1f-bd85-ce0e1e3a6785.
Der volle Inhalt der QuellePneumonia, especially hospital acquired, is frequent and accounts for both high mortality and high morbidity. Pseudomonas aeruginosa is the main bacteria responsible for these infections and is cause for concern with emerging antibiotic resistance. Therefore, any relevant microbiological or experimental data may be useful. From an experimental model of acute lung infection in rabbits, whose particularity is the faithful reproduction of human pharmacology, we tried try to develop a new model of chronic pulmonary infection by using a bacterial solution with agarose micro-beads. The results of these experiments are presented. We used the acute infection experimental model to evaluate the efficacy of new antibiotics against Pseudomonas aeruginosa. Thus, doripenem, lasted available carbapenem, at different doses and routes of IV administration, was compared to the two reference drugs, meropenem and imipenem. We have shown that higher doses of doripenem should be preferred. We also, in the same acute model, evaluated the efficacy of ceftolozane, newer cephalosporin, versus the following drugs: ceftazidime, piperacillin / tazobactam and imipenem. At usual doses (1g thrice a day), ceftolozane showed the same efficacy than comparators and a higher efficacy when higher doses were used (2g TID). Finally, we compared the in vitro susceptibility of 169 clinical isolates of Pseudomonas aeruginosa to the three mentioned above carbapenems (imipenem, meropenem and doripenem) demonstrating that these three drugs are actually quite close
Smith, Eric Earl. „Genetic adaptation by Pseudomonas aeruginosa during chronic cystic fibrosis infections and genetic variation between strains of P. aeruginosa /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5067.
Der volle Inhalt der QuelleDamron, Frederick H. „Regulation of alginate production of Pseudomonas aeruginosa“. [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=999.
Der volle Inhalt der QuelleBücher zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique"
Niels, Høiby, Hrsg. Pseudomonas aeruginosa infection. Basel: Karger, 1989.
Den vollen Inhalt der Quelle findenHauser, Alan R., und Jordi Rello, Hrsg. Severe Infections Caused by Pseudomonas Aeruginosa. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0433-7.
Der volle Inhalt der Quellename, No. Severe infections caused by Pseudomonas aeruginosa. Boston, MA: Kluwer Academic Publishers, 2003.
Den vollen Inhalt der Quelle findenG, Döring, Holder Ian Alan und Botzenhart K, Hrsg. Basic research and clinical aspects of Pseudomonas aeruginosa. Basel: Karger, 1987.
Den vollen Inhalt der Quelle findenY, Homma J., Hrsg. Pseudomonas aeruginosa in human diseases. Basel: Karger, 1991.
Den vollen Inhalt der Quelle finden1926-, Baltch Aldona L., und Smith Raymond P. 1946-, Hrsg. Pseudomonas aeruginosa: Infections and treatment. New York: M. Dekker, 1994.
Den vollen Inhalt der Quelle findenMario, Campa, Bendinelli Mauro und Friedman Herman 1931-, Hrsg. Pseudomonas aeruginosa as an opportunistic pathogen. New York: Plenum Press, 1993.
Den vollen Inhalt der Quelle findenPseudomonas aeruginosa as an Opportunistic Pathogen. Springer, 2011.
Den vollen Inhalt der Quelle findenFriedman, Herman, Mauro Bendinelli und Mario Campa. Pseudomonas aeruginosa as an Opportunistic Pathogen. Springer, 2012.
Den vollen Inhalt der Quelle findenRello, Jordi, und Alan R. Hauser. Severe Infections Caused by Pseudomonas Aeruginosa. Springer, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique"
Panayidou, Stavria, und Yiorgos Apidianakis. „Pseudomonas aeruginosa“. In Laboratory Models for Foodborne Infections, 373–89. Boca Raton : CRC Press/Taylor & Francis, 2017. | Series: Food microbiology series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120089-25.
Der volle Inhalt der QuelleDeretic, V. „Pseudomonas aeruginosa Infections“. In Persistent Bacterial Infections, 305–26. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818104.ch15.
Der volle Inhalt der QuelleGoldberg, Joanna B. „Emergence of Pseudomonas aeruginosa in Cystic Fibrosis Lung Infections“. In Pseudomonas, 141–75. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3909-5_5.
Der volle Inhalt der QuelleHancock, R. E. W. „Monoclonal Antibody Protection Against Pseudomonas aeruginosa“. In The Pathogenesis of Bacterial Infections, 422–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70351-5_45.
Der volle Inhalt der QuelleRolston, Kenneth V. I. „Pseudomonas Aeruginosa Infections in Cancer Patients“. In Severe Infections Caused by Pseudomonas Aeruginosa, 113–25. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0433-7_7.
Der volle Inhalt der QuelleVoirol, Pierre, und B. Joseph Guglielmo. „Treatment of Serious Pseudomonas Aeruginosa Infections“. In Severe Infections Caused by Pseudomonas Aeruginosa, 127–40. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0433-7_8.
Der volle Inhalt der QuelleHöffken, Gert. „Treatment of Serious Pseudomonas Aeruginosa Infections“. In Severe Infections Caused by Pseudomonas Aeruginosa, 141–52. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0433-7_9.
Der volle Inhalt der QuelleLi, X., Y. Zhang und E. Gulbins. „Lipid Rafts and Pseudomonas aeruginosa Infections“. In Handbook of Hydrocarbon and Lipid Microbiology, 3179–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_240.
Der volle Inhalt der QuelleDinwiddie, R. „Clinical aspects of mucoid Pseudomonas aeruginosa infections“. In Pseudomonas Infection and Alginates, 13–28. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1836-8_2.
Der volle Inhalt der QuelleRoig, Jorge, und Miquel Sabria. „The Spectrum of Pseudomonas Aeruginosa Disease“. In Severe Infections Caused by Pseudomonas Aeruginosa, 17–36. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0433-7_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Infections à Pseudomonas aeruginosa – Thérapeutique"
Bayes, Hannah K., und Thomas Evans. „Novel T Helper Cell Subsets In Immunity To Pseudomonas Aeruginosa Infections“. In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a6111.
Der volle Inhalt der QuelleAchaques-Rodriguez, M., F. Fernandez-Fraga, ME Martinez-Nuñez und T. Molina-Garcia. „4CPS-043 Extensively pandrug-resistant pseudomonas aeruginosa infections: analysis and outcomes“. In 24th EAHP Congress, 27th–29th March 2019, Barcelona, Spain. British Medical Journal Publishing Group, 2019. http://dx.doi.org/10.1136/ejhpharm-2019-eahpconf.192.
Der volle Inhalt der QuelleOrlandi, Viviana, Fabrizio Bolognese und Paola Barbieri. „Blue light enhances the antimicrobial activity of honey against Pseudomonas aeruginosa“. In Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases, herausgegeben von Tianhong Dai. SPIE, 2018. http://dx.doi.org/10.1117/12.2291644.
Der volle Inhalt der QuelleBodier-Montagutelli, Elsa, Jeoffrey Pardessus, Emilie Dalloneau, Cindy Fevre, Guillaume L'Hostis, Eric Morello, Jérôme Gabard et al. „Inhaled phage therapy for the treatment of acute Pseudomonas aeruginosa lung infections“. In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2649.
Der volle Inhalt der QuelleLu, Min, Tianhong Dai und Mei X. Wu. „Synergistic inactivation of multidrug-resistant Pseudomonas aeruginosa by essential oil and blue light“. In Photonic Diagnosis, Monitoring, Prevention, and Treatment of Infections and Inflammatory Diseases 2019, herausgegeben von Tianhong Dai, Mei X. Wu und Jürgen Popp. SPIE, 2019. http://dx.doi.org/10.1117/12.2507035.
Der volle Inhalt der QuelleHashimoto, M. C. E., R. A. Prates, D. J. Toffoli, L. C. Courrol und M. S. Ribeiro. „Prevention of bloodstream infections by photodynamic inactivation of multiresistant Pseudomonas aeruginosa in burn wounds“. In BiOS, herausgegeben von Michael R. Hamblin, Ronald W. Waynant und Juanita Anders. SPIE, 2010. http://dx.doi.org/10.1117/12.840278.
Der volle Inhalt der QuelleLei, Xia, und Yang Tan. „Effect and mechanisms of photodynamic therapy in treating chronic skin ulcers infected with Pseudomonas aeruginosa (Conference Presentation)“. In Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases, herausgegeben von Tianhong Dai. SPIE, 2018. http://dx.doi.org/10.1117/12.2289032.
Der volle Inhalt der QuelleIbrahem, Emad, Youssef Yasin und Omar Jasim. „Antibacterial activity of Zinc oxide Nanoparticles against Staphylococcus aureus and Pseudomonas aeruginosa isolated from burn wound infections“. In 4th International Scientific Conference of Cihan University-Erbil on Biological Sciences. Cihan University-Erbil, 2017. http://dx.doi.org/10.24086/bios17.24.
Der volle Inhalt der QuelleAntunes, Joana C., Tânia Tavares, Natália Homem, Marta Teixeira, M. Teresa Amorim und Helena Felgueiras. „Combinatory Action of Chitosan-Based Blended Films and Loaded Cajeput Oil Against Staphylococcus Aureus and Pseudomonas Aeruginosa-Mediated Infections“. In The First International Conference on “Green” Polymer Materials 2020. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/cgpm2020-07188.
Der volle Inhalt der QuelleWinstanley, Craig, Yasmin Hilliam, Matthew Moore, Iain Lamont, Charles Haworth, Diana Bilton, Juliet Foweraker, Martin Walshaw, Joanne Fothergill und Anthony De Soyza. „LATE-BREAKING ABSTRACT: Pseudomonas aeruginosa strain prevalence, adaptation and diversification, during chronic lung infections of UK non-cystic fibrosis bronchiectasis patients“. In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa2633.
Der volle Inhalt der Quelle