Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Inertial Bregman proximal gradient“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inertial Bregman proximal gradient" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Inertial Bregman proximal gradient"
Mukkamala, Mahesh Chandra, Peter Ochs, Thomas Pock und Shoham Sabach. „Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization“. SIAM Journal on Mathematics of Data Science 2, Nr. 3 (Januar 2020): 658–82. http://dx.doi.org/10.1137/19m1298007.
Der volle Inhalt der QuelleKabbadj, S. „Inexact Version of Bregman Proximal Gradient Algorithm“. Abstract and Applied Analysis 2020 (01.04.2020): 1–11. http://dx.doi.org/10.1155/2020/1963980.
Der volle Inhalt der QuelleZhou, Yi, Yingbin Liang und Lixin Shen. „A simple convergence analysis of Bregman proximal gradient algorithm“. Computational Optimization and Applications 73, Nr. 3 (04.04.2019): 903–12. http://dx.doi.org/10.1007/s10589-019-00092-y.
Der volle Inhalt der QuelleHanzely, Filip, Peter Richtárik und Lin Xiao. „Accelerated Bregman proximal gradient methods for relatively smooth convex optimization“. Computational Optimization and Applications 79, Nr. 2 (07.04.2021): 405–40. http://dx.doi.org/10.1007/s10589-021-00273-8.
Der volle Inhalt der QuelleMahadevan, Sridhar, Stephen Giguere und Nicholas Jacek. „Basis Adaptation for Sparse Nonlinear Reinforcement Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 27, Nr. 1 (30.06.2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Der volle Inhalt der QuelleYang, Lei, und Kim-Chuan Toh. „Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant“. SIAM Journal on Optimization 32, Nr. 3 (13.07.2022): 1523–54. http://dx.doi.org/10.1137/20m1360748.
Der volle Inhalt der QuelleLi, Jing, Xiao Wei, Fengpin Wang und Jinjia Wang. „IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning“. Electronics 10, Nr. 23 (03.12.2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Der volle Inhalt der QuelleXiao, Xiantao. „A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods“. Journal of Optimization Theory and Applications 188, Nr. 3 (08.01.2021): 605–27. http://dx.doi.org/10.1007/s10957-020-01799-3.
Der volle Inhalt der QuelleWang, Qingsong, Zehui Liu, Chunfeng Cui und Deren Han. „A Bregman Proximal Stochastic Gradient Method with Extrapolation for Nonconvex Nonsmooth Problems“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 14 (24.03.2024): 15580–88. http://dx.doi.org/10.1609/aaai.v38i14.29485.
Der volle Inhalt der QuelleHe, Lulu, Jimin Ye und Jianwei E. „Nonconvex optimization with inertial proximal stochastic variance reduction gradient“. Information Sciences 648 (November 2023): 119546. http://dx.doi.org/10.1016/j.ins.2023.119546.
Der volle Inhalt der QuelleDissertationen zum Thema "Inertial Bregman proximal gradient"
Godeme, Jean-Jacques. „Ρhase retrieval with nοn-Euclidean Bregman based geοmetry“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC214.
Der volle Inhalt der QuelleIn this work, we investigate the phase retrieval problem of real-valued signals in finite dimension, a challenge encountered across various scientific and engineering disciplines. It explores two complementary approaches: retrieval with and without regularization. In both settings, our work is focused on relaxing the Lipschitz-smoothness assumption generally required by first-order splitting algorithms, and which is not valid for phase retrieval cast as a minimization problem. The key idea here is to replace the Euclidean geometry by a non-Euclidean Bregman divergence associated to an appropriate kernel. We use a Bregman gradient/mirror descent algorithm with this divergence to solve thephase retrieval problem without regularization, and we show exact (up to a global sign) recovery both in a deterministic setting and with high probability for a sufficient number of random measurements (Gaussian and Coded Diffraction Patterns). Furthermore, we establish the robustness of this approachagainst small additive noise. Shifting to regularized phase retrieval, we first develop and analyze an Inertial Bregman Proximal Gradient algorithm for minimizing the sum of two functions in finite dimension, one of which is convex and possibly nonsmooth and the second is relatively smooth in the Bregman geometry. We provide both global and local convergence guarantees for this algorithm. Finally, we study noiseless and stable recovery of low complexity regularized phase retrieval. For this, weformulate the problem as the minimization of an objective functional involving a nonconvex smooth data fidelity term and a convex regularizer promoting solutions conforming to some notion of low-complexity related to their nonsmoothness points. We establish conditions for exact and stable recovery and provide sample complexity bounds for random measurements to ensure that these conditions hold. These sample bounds depend on the low complexity of the signals to be recovered. Our new results allow to go far beyond the case of sparse phase retrieval
Buchteile zum Thema "Inertial Bregman proximal gradient"
Mukkamala, Mahesh Chandra, Felix Westerkamp, Emanuel Laude, Daniel Cremers und Peter Ochs. „Bregman Proximal Gradient Algorithms for Deep Matrix Factorization“. In Lecture Notes in Computer Science, 204–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75549-2_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Inertial Bregman proximal gradient"
Li, Huan, Wenjuan Zhang, Shujian Huang und Feng Xiao. „Poisson Noise Image Restoration Based on Bregman Proximal Gradient“. In 2023 6th International Conference on Computer Network, Electronic and Automation (ICCNEA). IEEE, 2023. http://dx.doi.org/10.1109/iccnea60107.2023.00058.
Der volle Inhalt der QuellePu, Wenqiang, Jiawei Zhang, Rui Zhou, Xiao Fu und Mingyi Hong. „A Smoothed Bregman Proximal Gradient Algorithm for Decentralized Nonconvex Optimization“. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024. http://dx.doi.org/10.1109/icassp48485.2024.10448285.
Der volle Inhalt der Quelle