Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Industrial solvent“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Industrial solvent" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Industrial solvent"
Winterton, Neil. „The green solvent: a critical perspective“. Clean Technologies and Environmental Policy 23, Nr. 9 (30.09.2021): 2499–522. http://dx.doi.org/10.1007/s10098-021-02188-8.
Der volle Inhalt der QuelleDuval, Antoine, Francisco Vilaplana, Claudia Crestini und Martin Lawoko. „Solvent screening for the fractionation of industrial kraft lignin“. Holzforschung 70, Nr. 1 (01.01.2016): 11–20. http://dx.doi.org/10.1515/hf-2014-0346.
Der volle Inhalt der QuelleDe Brabander, Pieter, Evelien Uitterhaegen, Ellen Verhoeven, Cedric Vander Cruyssen, Karel De Winter und Wim Soetaert. „In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection“. Fermentation 7, Nr. 1 (17.02.2021): 26. http://dx.doi.org/10.3390/fermentation7010026.
Der volle Inhalt der QuelleRaksajati, Anggit, Minh Ho und Dianne Wiley. „Solvent Development for Post-Combustion CO2 Capture: Recent Development and Opportunities“. MATEC Web of Conferences 156 (2018): 03015. http://dx.doi.org/10.1051/matecconf/201815603015.
Der volle Inhalt der QuelleSharma, Shivika, und Shamsher S. Kanwar. „Organic Solvent Tolerant Lipases and Applications“. Scientific World Journal 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/625258.
Der volle Inhalt der QuelleSolominchuk, Tetiana, Vitalii Rudiuk, Lyudmila Sidorenko, Nataliia Kobzar, Maryna Rakhimova, Olha Vislous und Victoriya Georgiyants. „Solvents in the industrial synthesis of naphazoline nitrate: implementation of the principles of "Green chemistry" and analysis“. ScienceRise: Pharmaceutical Science, Nr. 1(47) (29.02.2024): 86–98. http://dx.doi.org/10.15587/2519-4852.2024.291468.
Der volle Inhalt der QuelleVees, Charlotte Anne, Christian Simon Neuendorf und Stefan Pflügl. „Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives“. Journal of Industrial Microbiology & Biotechnology 47, Nr. 9-10 (07.09.2020): 753–87. http://dx.doi.org/10.1007/s10295-020-02296-2.
Der volle Inhalt der QuelleMakars, Raimonds, Aigars Paze, Janis Rizikovs, Rudolfs Berzins, Daniela Godiņa, Maris Puke, Kristaps Stankus und Inguss Virsis. „Changes in Composition of Birch Outer Bark Extractives After Recrystallization with C2-C5 Alkanols“. Key Engineering Materials 850 (Juni 2020): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.850.3.
Der volle Inhalt der QuelleGredmaier, Ludwig, Sabine Grüner-Lempart, Julian Eckert, Rainer Joachim und Peter Funke. „Gas-to-aqueous Phase Transfer for Three Paint Solvents Injected into an Abiotic, Industrial Biotrickling Filter Measured with a Flame Ionization Detector“. Periodica Polytechnica Chemical Engineering 66, Nr. 1 (26.11.2021): 91–100. http://dx.doi.org/10.3311/ppch.18131.
Der volle Inhalt der QuelleChemat, Abert Vian, Ravi, Khadhraoui, Hilali, Perino und Tixier. „Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects“. Molecules 24, Nr. 16 (19.08.2019): 3007. http://dx.doi.org/10.3390/molecules24163007.
Der volle Inhalt der QuelleDissertationen zum Thema "Industrial solvent"
Dalgleish, John Richard. „The effects of paint solvent exposure on submariners“. Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240861.
Der volle Inhalt der QuelleFarshad, Ali A. „The relationship between occupational exposure, absorption and excretion of solvent vapours“. Thesis, University of Newcastle Upon Tyne, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240981.
Der volle Inhalt der QuelleGibson, Jason. „Neurotoxicity of the Industrial Solvent 4-Methylcyclohexanemethanol: Involvement of the GABA Receptor“. Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc799542/.
Der volle Inhalt der QuelleOesterle, Matthew John. „Silver ion and solvent effects on polystyrene photochemistry“. Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/27565.
Der volle Inhalt der QuelleAlves, Carine Tondo. „Transesterificação de Óleos e Gorduras Residuais via rotas metílica e etílica utilizando o catalisador Aluminato de Zinco, em presença ou não de CO2 supercrítico“. Universidade Federal da Bahia, 2012. http://repositorio.ufba.br/ri/handle/ri/23902.
Der volle Inhalt der QuelleApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-08-09T15:32:31Z (GMT) No. of bitstreams: 1 TESE-CARINE_TONDO_ALVES.pdf: 4198906 bytes, checksum: e7a6045dd5e751079523ef43e8a9eb69 (MD5)
Made available in DSpace on 2017-08-09T15:32:31Z (GMT). No. of bitstreams: 1 TESE-CARINE_TONDO_ALVES.pdf: 4198906 bytes, checksum: e7a6045dd5e751079523ef43e8a9eb69 (MD5)
Neste estudo, o aluminato de zinco foi sintetizado através da reação de combustão e caracterizado de acordo com suas propriedades físicas e texturais. O catalisador foi utilizado na reação de transesterificação em condições subcríticas e supercríticas, via rotas metílica e etílica a partir de óleos e gorduras residuais (OGR). As condições experimentais utilizadas foram previamente estudadas através do acervo bibliográfico e fixadas em 2 horas de reação, razão molar de álcool:óleo 40:1, agitação mecânica de 700 rpm, razão de catalisador em peso com relação à quantidade inicial de óleo entre 1 e 10 % e temperatura de reação entre 60 e 200 ºC. O estudo da reação de transesterificação indicou resultados promissores para as duas metodologias utilizadas. Os resultados obtidos indicaram que o rendimento em ésteres aumentou significativamente em temperaturas amênas quando a razão de catalisador:óleo foi acrescida de 1 % para 5,5 % e 10 % de catalisador em relação à quantidade inicial de óleo para as duas metodologias avaliadas. Estes dados foram justificados pela possibilidade de formação de mais do que uma fase entre o óleo e o álcool em baixas temperaturas. Contudo, a influência desta razão decresceu à medida que se aumentou a temperatura de reação até 200 °C, sendo obtidos rendimentos em ésteres > 98 % em 30 minutos de reação em condições severas utilizando-se 1 % de catalisador e dióxido de carbono em estado supercrítico.
In this study, the zinc aluminate was synthesized by the combustion reaction and characterized according to their physical and textural properties. The catalyst was used in the transesterification reaction in supercritical and subcritical conditions, via methylic and ethylic routes from waste frying oils (WFO). The experimental conditions used were previously studied and fixed in 2 hours of reaction time, 40:1 of alcohol:oil molar ratio, 700 rpm of mechanical stirring, 1, 5.5 % and 10 % by weight of catalyst ratio and 60 to 200 º C of reaction temperature. The study of the transesterification reaction indicated promising results for both methodologies. The results indicated that the yield of esters at moderate temperatures significantly increased when the ratio of catalyst:oil was increased from 1 % to 5.5 % and 10 % of catalyst relative to the initial quantity of oil to the two methodologies evaluated. These data were substantiated by the possibility of forming more than one phase between the oil and the alcohol at low temperatures. However, the influence of this ratio is decreased as the reaction temperature increased to 200 ° C, were obtained > 98% of esters yields in 30 minutes of reaction under stringent conditions using 1 % catalyst and supercritical carbon dioxide.
Benguerel, Elyse. „Solvent extraction of rhodium from chloride solutions in the presence of SnCl2 with Kelex 100tm“. Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40321.
Der volle Inhalt der QuelleThe two systems were characterized in terms of their equilibrium and kinetic behaviour during all three stages; activation, extraction, and stripping. Activation was found to proceed either at room temperature or at elevated temperatures and the above-mentioned expected Rh-Sn complexes were identified through $ sp{119}$Sn NMR and Raman spectroscopy. The extraction stage was found to be quantitative for rhodium and it was also found to be very rapid, with contact times of less than five minutes sufficient for rhodium extraction. The extraction mechanism was determined to be ion-pair formation with the protonated Kelex 100 molecules at a stoichiometry such that the overall charge in the organic phase is neutral, i.e., three Kelex 100 molecules for (RhCl$ rm sb3(SnCl sb3) sb3 rbrack sp{3-}$ and four for (Rh(SnCl$ sb3) sb5 rbrack sp{4-}.$
The stripping stages were the most problematic for both systems. In one case, the system was eventually abandoned due to limitations in the amount of rhodium which could be transferred to the sulfuric acid strip solution. For the low Sn:Rh system, reasonable rhodium transfer and concentration level were obtained. The rhodium complex in the strip solution has been proposed to be (RhCl$ rm sb2(SO sb3) rbrack sp{3-}.$ Strip solutions up to $4 times10 sp{-2}$M in rhodium concentration have been produced, from initial feed solutions having a rhodium concentration of about $4 times10 sp{-3}$M. Preliminary flowsheets are proposed for further refinement for both systems, although only the second system, the low Sn:Rh ratio system which uses sulfite stripping, is advocated for further development.
Sarkar, Lovely. „Physico-chemical studies on various interactions in some industrial solvent systems and viscous synergy and antagonism prevailing in liquid mixtures“. Thesis, University of North Bengal, 2010. http://hdl.handle.net/123456789/1418.
Der volle Inhalt der QuelleCanizella, Rodnei [UNESP]. „Análise das perdas na produção contínua de extração de óleo de soja: estudo de caso no método de extração por solvente“. Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/93012.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
As atividades de uma indústria com o sistema de produção contínua possuem características próprias dependendo do processo a que se dispõe a transformar uma matéria-prima, por isso este trabalho trata de analisar as perdas na produção contínua de extração de óleo de soja por solvente, apresentando a descrição do processo e as principais indicadores de desempenho, propondo sugetões de monitoramento para melhoria dos resultados. Essa abordagem é feita comparando-se resultados propiciados por alguns autores da área com dados da área com dados levantados de uma empresa no Brasil em dois períodos distintos, incluindo análise de evolução da planta, onde a alta gerência monitora a produtividade e a qualidade dos produtos, e trata as perdas no ambiente de transformação como consumo de solvente utilizado para extração do óleo de soja e consumo de combustível para a geração de energia térmica. Conclui-se que a indústria de extração de óleo vegetal, possui diversas variáveis de controle pelo conjunto de operações necessárias à transformação, ressaltando neste caso a perda de energia térmica como prioridade de atitudes de melhorias. Dado que a tendência de aumento da capacidade de processamento de soja é evidente, pela perspectiva de crescimento da produção de soja no Brasil, deve ser considerado neste contexto, o investimento em conhecimento para as pessoas exercerem as atividades operacionais em perfeita sincronia com as informações que ocorrem no processo, garantindo o objetivo da organização de minimização das perdas, e consequente aumento do lucro e crescimento
The activities of the industry with a continuous production system have their own characteristics depending on the process that is willing to turn a raw material, so this work is to analyzed the losses in the continuous production of soybean oil extraction solvent, presenting the description of the process and key performance indicators and propose suggestions for the improvement of monitoring results. This approach is made comparing the results obtained by some authors in the field with data collected from a company in Brazil in two distinct periods, including examination of the plant, where top management monitors productivity and product quality, and treats losses the environment of use as processing solvent used to extract the soybean oil and fuel to generate heat energy. It is concluded that the industry of oil extraction plant has several control variables the operations required for processing, emphasizing in this case the loss of thermal energy as priority actions for improvements. Since the trend of increased processing capacity of soybean is evident from the perspective of growth of soybean production in Brazil, should be considered in this context, investment in knowledge for people to exercise operational activities in perfect synchrony with the information occur in the process, ensuring the organization's goal of minimizind losses, and consequent increase in profit and growth
Canizella, Rodnei. „Análise das perdas na produção contínua de extração de óleo de soja : estudo de caso no método de extração por solvente /“. Bauru : [s.n.], 2012. http://hdl.handle.net/11449/93012.
Der volle Inhalt der QuelleAbstract: The activities of the industry with a continuous production system have their own characteristics depending on the process that is willing to turn a raw material, so this work is to analyzed the losses in the continuous production of soybean oil extraction solvent, presenting the description of the process and key performance indicators and propose suggestions for the improvement of monitoring results. This approach is made comparing the results obtained by some authors in the field with data collected from a company in Brazil in two distinct periods, including examination of the plant, where top management monitors productivity and product quality, and treats losses the environment of use as processing solvent used to extract the soybean oil and fuel to generate heat energy. It is concluded that the industry of oil extraction plant has several control variables the operations required for processing, emphasizing in this case the loss of thermal energy as priority actions for improvements. Since the trend of increased processing capacity of soybean is evident from the perspective of growth of soybean production in Brazil, should be considered in this context, investment in knowledge for people to exercise operational activities in perfect synchrony with the information occur in the process, ensuring the organization's goal of minimizind losses, and consequent increase in profit and growth
Orientador: Manoel Henrique Salgado
Coorientador: José de Souza Rodrigues
Banca: Rogério Andrade Flauzino
Banca: Vagner Cavenaghi
Mestre
Barman, Biraj Kumar. „Investigation of diverse interactions and inclusion complexation in different environment by physicochemical methodology“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2622.
Der volle Inhalt der QuelleBücher zum Thema "Industrial solvent"
Organic solvent neurotoxicity. Cincinnati, Ohio: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, 1987.
Den vollen Inhalt der Quelle findenInternational Federation of Building and Wood Workers., Hrsg. Solvent and paint hazards. Geneva: International Federation of Building and Wood Workers, 1992.
Den vollen Inhalt der Quelle findenFrost & Sullivan., Hrsg. U.S. industrial solvent markets: Environmental legislation changes markets dynamics. Mountain View, CA: Frost & Sullivan, 1994.
Den vollen Inhalt der Quelle findenHnatiuk, P. J. Solvent waste recycling: Final report, Industrial Waste Diversion Program. [Toronto]: Ontario Ministry of Environment and Energy, 1996.
Den vollen Inhalt der Quelle findenGiesler, Ron. Solvent reclamation project: Final report : Industrial Waste Diversion Program. [Toronto]: Ontario Ministry of Environment and Energy, 1996.
Den vollen Inhalt der Quelle findenInternational Solvent Extraction Conference (1993 University of York). Solvent extraction in the process industries. London: Published for SCI by Elsevier Applied Science, 1993.
Den vollen Inhalt der Quelle findenJan, Rydberg, Hrsg. Solvent extraction principles and practice. 2. Aufl. New York: M. Dekker, 2004.
Den vollen Inhalt der Quelle findenPierre, Marc. Le pôle d'archéologie industrielle du Solvent à Verviers. Namur: Institut du Patrimoine Wallon, 2017.
Den vollen Inhalt der Quelle findenW, Flick Ernest, Hrsg. Industrial solvents handbook. 5. Aufl. Westwood, N.J: Noyes Data Corp., 1998.
Den vollen Inhalt der Quelle findenW, Deatherage G., Hollar L. A und Air and Energy Engineering Research Laboratory, Hrsg. Evaluation of volatile organic emissions data for nonprocess solvent use in 15 commercial and industrial business categories: Project summary. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Industrial solvent"
TeGrotenhuis, W. E., R. J. Cameron, V. V. Viswanathan und R. S. Wegeng. „Solvent Extraction and Gas Absorption Using Microchannel Contactors“. In Microreaction Technology: Industrial Prospects, 541–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59738-1_56.
Der volle Inhalt der QuelleCornils, Boy. „Modern Solvent Systems in Industrial Homogeneous Catalysis“. In Modern Solvents in Organic Synthesis, 133–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48664-x_6.
Der volle Inhalt der QuelleCrane, Cynthia E., und John T. Novak. „Solvent Extraction of Pentachlorophenol Associated with Humic Acids“. In Hazardous and Industrial Waste Proceedings, 574–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003075905-74.
Der volle Inhalt der QuelleEjaz, Uroosa, und Muhammad Sohail. „Ionic Liquids: Green Solvent for Biomass Pretreatment“. In Nanotechnology-Based Industrial Applications of Ionic Liquids, 27–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44995-7_2.
Der volle Inhalt der QuelleLukáčová-Medvid’ová, Mária, Burkhard Dünweg, Paul Strasser und Nikita Tretyakov. „Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures“. In Mathematical Analysis of Continuum Mechanics and Industrial Applications II, 153–65. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6283-4_13.
Der volle Inhalt der QuelleManyim, S., A. K. Kiprop, J. I. Mwasiagi und A. C. Mecha. „Dyeing characteristics of different solvent extracts of Euclea divinorum on cotton fabric“. In Advances in Phytochemistry, Textile and Renewable Energy Research for Industrial Growth, 136–42. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003221968-18.
Der volle Inhalt der QuelleBarbosa, Haniel, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres Nötzli, Alex Ozdemir et al. „Flexible Proof Production in an Industrial-Strength SMT Solver“. In Automated Reasoning, 15–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10769-6_3.
Der volle Inhalt der QuelleGooch, Jan W. „Special Industrial Solvents“. In Encyclopedic Dictionary of Polymers, 684. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10939.
Der volle Inhalt der QuelleCohen, Aviad, Alexander Nadel und Vadim Ryvchin. „Local Search with a SAT Oracle for Combinatorial Optimization“. In Tools and Algorithms for the Construction and Analysis of Systems, 87–104. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72013-1_5.
Der volle Inhalt der QuelleA. Wallace, Hayes, und Kobets Tetyana. „Solvents and Industrial Hygiene“. In Hayes' Principles and Methods of Toxicology, Vol1:853—Vol1:886. 7. Aufl. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003390008-17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Industrial solvent"
Rakotoalimanana, D., M. Scala, R. Cadours, E. Cloarec, F. Lucile und M. A. Paran. „Industrial Operational Feedback of Solvent Acidification for a More Energy-Efficient Operation of an AGRU“. In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216112-ms.
Der volle Inhalt der QuelleMuravyova, E. A., und E. H. Atangulova. „Adaptive Fuzzy Control for Rectification Process of Recycled Solvent“. In 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2020. http://dx.doi.org/10.1109/fareastcon50210.2020.9271506.
Der volle Inhalt der QuelleTamara, Yunita Merlin, Wahyu Nur Hidayat, Asma Nur Azizah und Dwi Ardiana Setyawardhani. „Kesambi oil extraction using the solvent extraction method“. In THE 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL, MECHANICAL, ELECTRICAL, AND CHEMICAL ENGINEERING 2019 (ICIMECE 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000691.
Der volle Inhalt der QuelleGilmartin, Mike, Curt Graham und Ghaith Aljazzar. „A Physical Solvent Approach to Blue Hydrogen“. In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22330-ea.
Der volle Inhalt der QuelleSplinter, Steven, und Marilena Radoiu. „CONTINUOUS INDUSTRIAL-SCALE MICROWAVE-ASSISTED EXTRACTION OF HIGH-VALUE INGREDIENTS FROM NATURAL BIOMASS“. In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9758.
Der volle Inhalt der QuelleDavood Abadi Farahani, Mohammad Hossein. „Organic solvent nanofiltration membrane for vegetable oil refining“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/srfh3809.
Der volle Inhalt der QuelleKwartiningsih, Endang, Wahyudi Budi Sediawan, Muslikhin Hidayat und Ahmad Tawfiequrrahman Yuliansyah. „Design of supercritical fluid extractor using dry ice as a supercritical solvent“. In THE 4TH INTERNATIONAL CONFERENCE ON INDUSTRIAL, MECHANICAL, ELECTRICAL, AND CHEMICAL ENGINEERING. Author(s), 2019. http://dx.doi.org/10.1063/1.5098259.
Der volle Inhalt der QuelleRahayu, Nurhayati, Setiyo Gunawan und Hakun Wirawasista Aparamarta. „Extraction of bioactive compound from mangosteen peel (Garcinia mangostana L.) using ternary system solvent“. In ADVANCES IN MECHANICAL ENGINEERING, INDUSTRIAL INFORMATICS AND MANAGEMENT (AMEIIM2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0164608.
Der volle Inhalt der QuelleĐekanović, Zorana, Duška Delić, Vojo Radić, Aleksandra Šmitran, Nevena Jokić, Relja Suručić und Ranko Škrbić. „IN VITRO TRIAL FOR ANTIMICROBIAL ACTIVITY OF INDUSTRIAL HEMP EXTRACTS“. In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.377dj.
Der volle Inhalt der QuelleLi, ChengFei, und DeMing Zuo. „Fuzzy Multi-objective Particle Swarm Optimization Algorithm Using Industrial Purified Terephthalic Acid Solvent Dehydration Process“. In 2009 WRI World Congress on Computer Science and Information Engineering. IEEE, 2009. http://dx.doi.org/10.1109/csie.2009.810.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Industrial solvent"
Poirier, M., T. Thomas Peters, F. Fernando Fondeur und S. Samuel Fink. ANALYSIS OF SOLVENT RECOVERED FROM WRIGHT INDUSTRIES, INCORPORATED TESTING. US: SRS, Januar 2007. http://dx.doi.org/10.2172/898369.
Der volle Inhalt der QuelleCORPORATE-TECH PLANNING INC WALTHAM MA. Problem Solving and Training Guide for Shipyard Industrial Engineers. Fort Belvoir, VA: Defense Technical Information Center, Juni 1986. http://dx.doi.org/10.21236/ada444025.
Der volle Inhalt der QuelleBeltrán Osuna, Ángela Aurora, Jorge Enrique Höwer Carreño und Luis Carlos Bautista Jaime. Producción de mezcladores y pitillos basados en almidón termoplástico mediante el proceso de extrusión. Escuela Tecnológica Instituto Técnico Central, 2022. http://dx.doi.org/10.55411/2023.22.
Der volle Inhalt der QuelleDevlin, Robert. Towards Good Governance of Public-Private Alliance Councils Supporting Industrial Policies in Latin America. Inter-American Development Bank, März 2014. http://dx.doi.org/10.18235/0010576.
Der volle Inhalt der QuellePietrobelli, Carlo, und Robert Devlin. Modern Industrial Policy and Public-Private Councils at the Subnational Level: Empirical Evidence from Mexico. Inter-American Development Bank, Oktober 2016. http://dx.doi.org/10.18235/0009309.
Der volle Inhalt der QuelleBadia, S., A. Martín, J. Principe, C. Soriano und R. Rossi. D3.1 Report on nonlinear domain decomposition preconditioners and release of the solvers. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.021.
Der volle Inhalt der QuelleDornburg, Courtney C., Susan Marie Stevens, Travis L. Bauer, George S. Davidson, James Chris Forsythe und Stacey M. Langfitt Hendrickson. Improving human effectiveness for extreme-scale problem solving : final report (assessing the effectiveness of electronic brainstorming in an industrial setting). Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/922083.
Der volle Inhalt der QuelleDornburg, Courtney C., Susan Marie Stevens, George S. Davidson und Stacey M. Langfitt Hendrickson. LDRD final report for improving human effectiveness for extreme-scale problem solving : assessing the effectiveness of electronic brainstorming in an industrial setting. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/942185.
Der volle Inhalt der QuelleLeidermark, Daniel, und Magnus Andersson, Hrsg. Reports in Applied Mechanics 2022. Linköping University Electronic Press, Februar 2024. http://dx.doi.org/10.3384/9789180754156.
Der volle Inhalt der QuelleBykova, Tatyana B., Mykola V. Ivashchenko, Darja A. Kassim und Vasyl I. Kovalchuk. Blended learning in the context of digitalization. [б. в.], Juni 2021. http://dx.doi.org/10.31812/123456789/4441.
Der volle Inhalt der Quelle