Auswahl der wissenschaftlichen Literatur zum Thema „Induction (Logic)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Induction (Logic)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Induction (Logic)"

1

Devesas Campos, Marco, und Marcelo Fiore. „Classical logic with Mendler induction“. Journal of Logic and Computation 30, Nr. 1 (Januar 2020): 77–106. http://dx.doi.org/10.1093/logcom/exaa004.

Der volle Inhalt der Quelle
Annotation:
Abstract We investigate (co-) induction in classical logic under the propositions-as-types paradigm, considering propositional, second-order and (co-) inductive types. Specifically, we introduce an extension of the Dual Calculus with a Mendler-style (co-) iterator and show that it is strongly normalizing. We prove this using a reducibility argument.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kaminsky, Jack. „Logic, Induction, and Ontology“. International Studies in Philosophy 20, Nr. 1 (1988): 111. http://dx.doi.org/10.5840/intstudphil198820151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Howson, Colin. „A Logic of Induction“. Philosophy of Science 64, Nr. 2 (Juni 1997): 268–90. http://dx.doi.org/10.1086/392551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Terwijn, Sebastiaan A. „Probabilistic Logic and Induction“. Journal of Logic and Computation 15, Nr. 4 (01.08.2005): 507–15. http://dx.doi.org/10.1093/logcom/exi032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yamaguchi, Fumihiko, und Masakazu Nakanishi. „Induction in linear logic“. International Journal of Theoretical Physics 35, Nr. 10 (Oktober 1996): 2107–16. http://dx.doi.org/10.1007/bf02302230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kuznetsov, Stepan. „Action Logic is Undecidable“. ACM Transactions on Computational Logic 22, Nr. 2 (15.05.2021): 1–26. http://dx.doi.org/10.1145/3445810.

Der volle Inhalt der Quelle
Annotation:
Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. One of the operations of this logic is the Kleene star, which is axiomatized by an induction scheme. For a stronger system that uses an -rule instead (infinitary action logic), Buszkowski and Palka (2007) proved -completeness (thus, undecidability). Decidability of action logic itself was an open question, raised by Kozen in 1994. In this article, we show that it is undecidable, more precisely, -complete. We also prove the same undecidability results for all recursively enumerable logics between action logic and infinitary action logic, for fragments of these logics with only one of the two lattice (additive) connectives, and for action logic extended with the law of distributivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dogan, Hamide. „Mathematical induction: deductive logic perspective“. European Journal of Science and Mathematics Education 4, Nr. 3 (15.07.2016): 315–30. http://dx.doi.org/10.30935/scimath/9473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Greenland, Sander. „Probability Logic and Probabilistic Induction“. Epidemiology 9, Nr. 3 (Mai 1998): 322–32. http://dx.doi.org/10.1097/00001648-199805000-00018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arieli, Itai, und Robert J. Aumann. „The logic of backward induction“. Journal of Economic Theory 159 (September 2015): 443–64. http://dx.doi.org/10.1016/j.jet.2015.07.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

K.M.MAKWANA, K. M. MAKWANA, Dr B. R. PAREKH Dr.B.R.PAREKH und SHEETAL SHINKHEDE. „Fuzzy Logic Controller Vs Pi Controller for Induction Motor Drive“. Indian Journal of Applied Research 3, Nr. 7 (01.10.2011): 315–18. http://dx.doi.org/10.15373/2249555x/july2013/97.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Induction (Logic)"

1

Wedin, Hanna. „Mathematical Induction“. Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hill, Alexandra. „Reasoning by analogy in inductive logic“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/reasoning-by-analogy-in-inductive-logic(039622d8-ab3f-418f-b46c-4d4e7a9eb6c1).html.

Der volle Inhalt der Quelle
Annotation:
This thesis investigates ways of incorporating reasoning by analogy into Pure (Unary) Inductive Logic. We start with an analysis of similarity as distance, noting that this is the conception that has received most attention in the literature so far. Chapter 4 looks in some detail at the consequences of adopting Hamming Distance as our measure of similarity, which proves to be a strong requirement. Chapter 5 then examines various adaptations of Hamming Distance and proposes a subtle modification, further-away-ness, that generates a much larger class of solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lapointe, Stéphane. „Induction of recursive logic programs“. Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rowan, Michael. „Hume, probability and induction“. Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phr877.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Caldon, Patrick Computer Science &amp Engineering Faculty of Engineering UNSW. „Limiting programs for induction in artificial intelligence“. Awarded by:University of New South Wales, 2008. http://handle.unsw.edu.au/1959.4/37484.

Der volle Inhalt der Quelle
Annotation:
This thesis examines a novel induction-based framework for logic programming. Limiting programs are logic programs distinguished by two features, in general they contain an infinite data stream over which induction will be performed, and in general it is not possible for a system to know when a solution for any program is correct. These facts are characteristic of some problems involving induction in artificial intelligence, and several problems in knowledge representation and logic programming have exactly these properties. This thesis presents a specification language for problems with an inductive nature, limiting programs, and a resolution based system, limiting resolution, for solving these problems. This framework has properties which guarantee that the system will converge upon a particular answer in the limit. Solutions to problems which have such an inductive property by nature can be implemented using the language, and solved with the solver. For instance, many classification problems are inductive by nature. Some generalized planning problems also have the inductive property. For a class of generalized planning problems, we show that identifying a collection of domains where a plan reaches a goal is equivalent to producing a plan. This thesis gives examples of both. Limiting resolution works by a generate-and-test strategy, creating a potential solution and iteratively looking for a contradiction with the growing stream of data provided. Limiting resolution can be implemented by modifying conventional PROLOG technology. The generateand- test strategy has some inherent inefficiencies. Two improvements have arisen from this work; the first is a tabling strategy which records previously failed attempts to produce a solution and thereby avoids redundant test steps. The second is based on the heuristic observation that for some problems the size of the test step is proportional to the closeness of the generated potential-solution to the real solution, in a suitable metric. The observation can be used to improve the performance of limiting resolution. Thus this thesis describes, from theoretical foundations to implementation, a coherent methodology for incorporating induction into existing general A.I. programming techniques, along with examples of how to perform such tasks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tappert, Peter M. „Damage identification using inductive learning“. Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-05092009-040651/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kimber, Timothy. „Learning definite and normal logic programs by induction on failure“. Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9961.

Der volle Inhalt der Quelle
Annotation:
This thesis presents two novel inductive logic programming (ILP) approaches, based on the notion of a connected theory. A connected theory contains clauses that depend on one another, either directly or via clauses in the background knowledge. Generalisation of such a theory is proved to be a sound and complete method for learning definite ILP hypotheses. The Induction on Failure (IOF) proof procedure, based on the connected theory generalisation method, adds secondary examples into the hypothesis, and generates auxiliary clauses to explain them. These concepts, novel to IOF, address the issues of incompleteness present in previous definite ILP methods. The concept of the connected theory is also applied to the non-monotonic, normal program setting. Thus, the method of generalisation of a normal connected theory is presented. Fundamental to this is the assertion that a partial non-monotonic hypothesis must include both positive and negative information, which the general hypothesis should preserve. This has resulted in, as far as the author is aware, the most complete semantic characterisation available of non-monotonic ILP using a bridge formula. It is proved that generalisation of such a formula to a set of completed definitions is a sound method of generating normal program hypotheses. In the course of establishing a completeness result for this latter approach, the semantics of the supported consequences of a normal program are defined, and the support tree method is presented and shown to be a sound and complete proof procedure for supported consequences. Using these results, it is shown that, for function-free programs, any correct hypothesis for which the examples are supported consequences of the learned program can be derived via a normal connected theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Barnes, Valerie Elizabeth. „The quality of human judgment : an alternative perspective /“. Thesis, Connect to this title online; UW restricted, 1985. http://hdl.handle.net/1773/9139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Syed, Altaf Ahmad. „Applied Fuzzy Logic Controls for Improving Dynamic Response of Induction Machines“. Connect to resource online, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1219671348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Barker, Gillian Abernathy. „Abstraction, analogy and induction : toward a general account of ampliative inference /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9820857.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Induction (Logic)"

1

Millgram, Elijah. Practical induction. Cambridge, Mass: Harvard University Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

I, Craig, und Cohn A. G, Hrsg. The logic of induction. Chichester [England]: Halsted Press, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gabbay, Dov M. Inductive Logic. San Diego: North Holland [Imprint], 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kawalec, Paweł. Structural reliabilism: Inductive logic as a theory of justification. Dordrecht: Kluwer Academic Publishers, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Baird, Davis. Inductive logic: Probability and statistics. Englewood Cliffs, N.J: Prentice Hall, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, H. Automated Mathematical Induction. Dordrecht: Springer Netherlands, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Williams, Donald Cary. The ground of induction. Cambridge, MA: Harvard University Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Skyrms, Brian. Choice and chance: An introduction to inductive logic. 4. Aufl. Australia: Wadsworth/Thomson Learning, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Skyrms, Brian. Choice and chance: An introduction to inductive logic. 3. Aufl. Belmont, Calif: Wadsworth Pub. Co., 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

A, Flach Peter, und Kakas Antonis C, Hrsg. Abduction and induction: Essays on their relation and integration. Dordrecht: Kluwer Academic, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Induction (Logic)"

1

Genesereth, Michael, und Eric Kao. „Induction“. In Introduction to Logic, 111–21. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01798-8_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Genesereth, Michael, und Eric Kao. „Induction“. In Introduction to Logic, 121–36. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-031-01799-5_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Genesereth, Michael, und Eric J. Kao. „Induction“. In Introduction to Logic, 121–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-01801-5_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Anthony, Simon, und Alan M. Frisch. „Cautious induction in inductive logic programming“. In Inductive Logic Programming, 45–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3540635149_34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kotlarski, Henryk. „Transfinite Induction“. In Trends in Logic, 73–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28921-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sethy, Satya Sundar. „Induction“. In Introduction to Logic and Logical Discourse, 243–59. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2689-0_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Adriaans, Pieter, und Erik de Haas. „Grammar Induction as Substructural Inductive Logic Programming“. In Learning Language in Logic, 127–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-40030-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Falke, Stephan, und Deepak Kapur. „Inductive Decidability Using Implicit Induction“. In Logic for Programming, Artificial Intelligence, and Reasoning, 45–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11916277_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cellucci, Carlo. „Induction and Analogy“. In Logic, Argumentation & Reasoning, 331–46. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6091-2_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Otero, Ramón P. „Induction of Stable Models“. In Inductive Logic Programming, 193–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44797-0_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Induction (Logic)"

1

EELLS, ELLERY. „POPPER AND MILLER, AND INDUCTION AND DEDUCTION“. In 7th and 8th Asian Logic Conferences. CO-PUBLISHED WITH SINGAPORE UNIVERSITY PRESS, 2003. http://dx.doi.org/10.1142/9789812705815_0006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Eskander, M. N. „Fuzzy logic control of saturated induction machine“. In 6th International Workshop on Advanced Motion Control. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/amc.2000.862878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baunsgaard Kristensen, Magnus, Rasmus Ejlers Mogelberg und Andrea Vezzosi. „Greatest HITs: Higher inductive types in coinductive definitions via induction under clocks“. In LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3531130.3533359.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Azgomi, Hamid Fekri, und Javad Poshtan. „Induction motor stator fault detection via fuzzy logic“. In 2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE, 2013. http://dx.doi.org/10.1109/iraniancee.2013.6599711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Venkatachalam, M., und S. Thangavel. „Fuzzy logic based performance improvement of induction motor“. In 2012 IEEE International Conference on Engineering Education: Innovative Practices and Future Trends (AICERA). IEEE, 2012. http://dx.doi.org/10.1109/aicera.2012.6306749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shetgaonkar, Satej Santosh. „Fault diagnosis in induction motor using fuzzy logic“. In 2017 International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2017. http://dx.doi.org/10.1109/iccmc.2017.8282693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kuzelka, Ondrej, Jesse Davis und Steven Schockaert. „Induction of Interpretable Possibilistic Logic Theories from Relational Data“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/160.

Der volle Inhalt der Quelle
Annotation:
The field of statistical relational learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which makes them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Abdel-Rahim, Naser M. B. „Fuzzy-Logic control of unsymmetrical two-phase induction motor“. In IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics. IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6388925.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Madbouly, S. O., H. F. Soliman, H. M. Hasanien und M. A. Badr. „Fuzzy logic control of brushless doubly fed induction generator“. In 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010). Institution of Engineering and Technology, 2010. http://dx.doi.org/10.1049/cp.2010.0085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Johnston, Benjamin, und Guido Governatori. „Induction of defeasible logic theories in the legal domain“. In the 9th international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1047788.1047834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Induction (Logic)"

1

Lukac, Martin. Quantum Inductive Learning and Quantum Logic Synthesis. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.2316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Küsters, Ralf, und Ralf Molitor. Computing Least Common Subsumers in ALEN. Aachen University of Technology, 2000. http://dx.doi.org/10.25368/2022.110.

Der volle Inhalt der Quelle
Annotation:
Computing the least common subsumer (lcs) in description logics is an inference task first introduced for sublanguages of CLASSIC. Roughly speaking, the lcs of a set of concept descriptions is the most specific concept description that subsumes all of the input descriptions. As such, the lcs allows to extract the commonalities from given concept descriptions, a task essential for several applications like, e.g., inductive learning, information retrieval, or the bottom-up construction of KR-knowledge bases. Previous work on the lcs has concentrated on description logics that either allow for number restrictions or for existential restrictions. Many applications, however, require to combine these constructors. In this work, we present an lcs algorithm for the description logic ALEN, which allows for both constructors (as well as concept conjunction, primitive negation, and value restrictions). The proof of correctness of our lcs algorithm is based on an appropriate structural characterization of subsumption in ALEN also introduced in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Küsters, Ralf, und Ralf Molitor. Computing Least Common Subsumers in ALEN. Aachen University of Technology, 2000. http://dx.doi.org/10.25368/2022.110.

Der volle Inhalt der Quelle
Annotation:
Computing the least common subsumer (lcs) in description logics is an inference task first introduced for sublanguages of CLASSIC. Roughly speaking, the lcs of a set of concept descriptions is the most specific concept description that subsumes all of the input descriptions. As such, the lcs allows to extract the commonalities from given concept descriptions, a task essential for several applications like, e.g., inductive learning, information retrieval, or the bottom-up construction of KR-knowledge bases. Previous work on the lcs has concentrated on description logics that either allow for number restrictions or for existential restrictions. Many applications, however, require to combine these constructors. In this work, we present an lcs algorithm for the description logic ALEN, which allows for both constructors (as well as concept conjunction, primitive negation, and value restrictions). The proof of correctness of our lcs algorithm is based on an appropriate structural characterization of subsumption in ALEN also introduced in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie