Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Indium selenid.

Zeitschriftenartikel zum Thema „Indium selenid“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Indium selenid" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ivanauskas, Algimantas, Remigijus Ivanauskas und Ingrida Ancutiene. „Effect of In-Incorporation and Annealing on CuxSe Thin Films“. Materials 14, Nr. 14 (08.07.2021): 3810. http://dx.doi.org/10.3390/ma14143810.

Der volle Inhalt der Quelle
Annotation:
A study of indium-incorporated copper selenide thin-film deposition on a glass substrate using the successive ionic adsorption and reaction method (SILAR) and the resulting properties is presented. The films were formed using these steps: selenization in the solution of diseleniumtetrathionate acid, treatment with copper(II/I) ions, incorporation of indium(III), and annealing in an inert nitrogen atmosphere. The elemental and phasal composition, as well as the morphological and optical properties of obtained films were determined. X-ray diffraction data showed a mixture of various compounds: Se, Cu0.87Se, In2Se3, and CuInSe2. The obtained films had a dendritic structure, agglomerated and not well-defined grains, and a film thickness of ~90 μm. The band gap values of copper selenide were 1.28–1.30 eV and increased after indium-incorporation and annealing. The optical properties of the formed films correspond to the optical properties of copper selenide and indium selenide semiconductors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Song, Nahong, Hong Ling, Yusheng Wang, Liying Zhang, Yuye Yang und Yu Jia. „Intriguing electronic properties of germanene/ indium selenide and antimonene/ indium selenide heterostructures“. Journal of Solid State Chemistry 269 (Januar 2019): 513–20. http://dx.doi.org/10.1016/j.jssc.2018.10.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kabanov V. F., Mikhailov A. I. und Gavrikov M. V. „Investigation of the features of electronic spectrum of quantum dots in narrow-gap semiconductors“. Technical Physics Letters 48, Nr. 8 (2022): 47. http://dx.doi.org/10.21883/tpl.2022.08.55061.19220.

Der volle Inhalt der Quelle
Annotation:
Samples with quantum dots (QDs) of narrow-gap semiconductors of the A3B5 group (indium antimonide) and the A2B6 group (mercury selenide) have been studied. The absorption spectra of the investigated QDs are analyzed and the correspondence of the maxima in the spectral characteristics to the model representations of the calculated electronic energy spectrum for this materials is assessed. It is concluded that used model representations requires refinement, primarily due to the fact that studied objects are nanocrystals with complex geometry. Keywords: quantum dots, indium antimonide, mercury selenide, electronic energy spectrum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Katerynchuk, V. M. „Photoemission spectra of indium selenide“. Semiconductor physics, quantum electronics and optoelectronics 9, Nr. 4 (15.12.2006): 36–39. http://dx.doi.org/10.15407/spqeo9.04.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Massaccesi, Sylvie, Sylvie Sanchez und Jacques Vedel. „Electrodeposition of indium selenide in2se3“. Journal of Electroanalytical Chemistry 412, Nr. 1-2 (August 1996): 95–101. http://dx.doi.org/10.1016/0022-0728(96)04604-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Katee, Narjes Sadeq, Oday Ibraheem Abdullah und Emad Talib Hashim. „Extracting Four Solar Model Electrical Parameters of Mono-Crystalline Silicon (mc-Si) and Thin Film (CIGS) Solar Modules using Different Methods“. Journal of Engineering 27, Nr. 4 (29.03.2021): 16–32. http://dx.doi.org/10.31026/j.eng.2021.04.02.

Der volle Inhalt der Quelle
Annotation:
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure gives extremely significant data to the plan, establishment, and upkeep of PV frameworks. Three methods, simplified explicit, slope, and iterative, are used to compute two solar models' parameters using MATLAB code. The percentage maximum power errors at (600 and 1000) W/m2 for both current-voltage and power-voltage values with the corresponding measured ones using the slope method are 0.5% and 3% for monocrystalline silicon copper indium gallium di-selenide, respectively. The iterative method is 5 % and 10% for monocrystalline silicon and copper indium gallium di-selenide. Finally, for the simplified explicit 8% and 9%, for monocrystalline silicon and copper indium gallium di-selenide, respectively. The slope method gives more close results with the corresponding measured values than the other two methods for the two PV solar modules used. Consequently, the slope method is less influenced by the meteorological condition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ramanujam, Jeyakumar, und Udai P. Singh. „Copper indium gallium selenide based solar cells – a review“. Energy & Environmental Science 10, Nr. 6 (2017): 1306–19. http://dx.doi.org/10.1039/c7ee00826k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Niu, Xianghong, Yunhai Li, Yehui Zhang, Qijing Zheng, Jin Zhao und Jinlan Wang. „Highly efficient photogenerated electron transfer at a black phosphorus/indium selenide heterostructure interface from ultrafast dynamics“. Journal of Materials Chemistry C 7, Nr. 7 (2019): 1864–70. http://dx.doi.org/10.1039/c8tc06208k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sun, Maojun, Wei Wang, Qinghua Zhao, Xuetao Gan, Yuanhui Sun, Wanqi Jie und Tao Wang. „ε-InSe single crystals grown by a horizontal gradient freeze method“. CrystEngComm 22, Nr. 45 (2020): 7864–69. http://dx.doi.org/10.1039/d0ce01271h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rahman, Md Ferdous, Mithun Chowdhury, Latha Marasamy, Mustafa K. A. Mohammed, Md Dulal Haque, Sheikh Rashel Al Ahmed, Ahmad Irfan, Aijaz Rasool Chaudhry und Souraya Goumri-Said. „Improving the efficiency of a CIGS solar cell to above 31% with Sb2S3 as a new BSF: a numerical simulation approach by SCAPS-1D“. RSC Advances 14, Nr. 3 (2024): 1924–38. http://dx.doi.org/10.1039/d3ra07893k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Mondal, Bipanko Kumar, Shaikh Khaled Mostaque, Md Ariful Islam und Jaker Hossain. „Stress-induced phase-alteration in solution processed indium selenide thin films during annealing“. RSC Advances 11, Nr. 23 (2021): 13751–62. http://dx.doi.org/10.1039/d1ra01403j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Stoll, Sarah L., Edward G. Gillan und Andrew R. Barron. „Chemical vapor deposition of Gallium selenide and indium selenide nanoparticles“. Chemical Vapor Deposition 2, Nr. 5 (September 1996): 182–84. http://dx.doi.org/10.1002/cvde.19960020506.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Jamel Kadia, Noor, Emad T. Hashim und Oday I. Abdullah. „PERFORMANCE OF DIFFERENT PHOTOVOLTAIC TECHNOLOGIES FOR AMORPHOUS SILICON (A-SI) AND COPPER INDIUM GALLIUM DI-SELENIDE (CIGS) PHOTOVOLTAIC MODULES“. Journal of Engineering and Sustainable Development 26, Nr. 1 (03.01.2022): 95–105. http://dx.doi.org/10.31272/jeasd.26.1.10.

Der volle Inhalt der Quelle
Annotation:
In this work, the analysis of performance of two types of photovoltaic (PV) (Amorphous Silicon (a-Si) Copper Indium Gallium Diselenide (CIGS) technologies were achieved out under under Iraqi (Baghdad)climate conditions. The elevation of the selected site is 9 m above ground level. The experimental work covered the eight commercially available PV technologies. The two technologies that employed in this work are, Amorphous Silicon (a-Si) and Copper Indium Gallium Diselenide (CIGS). The total period of the experimental work was 7 months, and the data were analyzed simultaneously. Special attention is given to the influence of temperature and solar radiation the performance of the PV modules. Where, it was proposed a simple I-V curve test for PV modules. The results showed that the proposed system successfully experimentally extracted I-V curves of the selected two PV modules (amorphous and CIGS solar modules). The maximum values of power (Pmax) at solar radiation intensity 750 W/m² are 2.742 W, and 2.831 W for amorphous silicon and copper indium gallium di-selenide respectively. This is occurred because the lowest solar module operating temperature (19 oC and 17 oC for solar radiation 750 and 1000 W/m2 respectively) and ambient temperature (7 oC) and for Jan., 2021 than other months. Consequently, the same behavior for the two modules at solar irradiance 1000 W/m2 with the highest power value; 2.680 W, and 3.198 W of amorphous silicon and copper indium gallium di-selenide respectively. Furthermore, the minimum values of power (Pmax) at solarradiation intensity 750 W/m² are 2.530, and 2.831 for amorphous silicon and copper indium gallium di-selenide respectively because we have the highest solar module operating temperature (57 oC, and 55 oC respectively) and ambient temperature (45 oC) for April, 2021 than other months. Consequently, the same behavior for the two modules at solar irradiance 1000 W/m2 with the highest power value; 2.680 W, and 3.198 W of amorphous silicon and copper indium gallium di-selenide respectively. The highest efficiency can be notes for CIGS solar module with a value 7.3%, while the lowest one is 5.5% for amorphous solar module.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Zhao, Qinghua, Wei Wang, Felix Carrascoso-Plana, Wanqi Jie, Tao Wang, Andres Castellanos-Gomez und Riccardo Frisenda. „The role of traps in the photocurrent generation mechanism in thin InSe photodetectors“. Materials Horizons 7, Nr. 1 (2020): 252–62. http://dx.doi.org/10.1039/c9mh01020c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Cruz, R. M. de la, R. Pareja, A. Segura und A. Chevy. „Positron lifetime experiments in indium selenide“. Journal of Physics C: Solid State Physics 21, Nr. 24 (30.08.1988): 4403–8. http://dx.doi.org/10.1088/0022-3719/21/24/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Yu, Bin, Sanghyun Ju, Xuhui Sun, Garrick Ng, Thuc Dinh Nguyen, M. Meyyappan und David B. Janes. „Indium selenide nanowire phase-change memory“. Applied Physics Letters 91, Nr. 13 (24.09.2007): 133119. http://dx.doi.org/10.1063/1.2793505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Badikov, V. V., V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva und S. I. Scherbakov. „Optical properties of lithium indium selenide“. Optical Materials 23, Nr. 3-4 (September 2003): 575–81. http://dx.doi.org/10.1016/s0925-3467(03)00024-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Riera, J., A. Segura und A. Chevy. „Segregation of Silicon in Indium Selenide“. Physica Status Solidi (a) 132, Nr. 1 (16.07.1992): K19—K21. http://dx.doi.org/10.1002/pssa.2211320129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Tamalampudi, Srinivasa Reddy, Raman Sankar, Harry Apostoleris, Mariam Ali Almahri, Boulos Alfakes, Abdulrahman Al-Hagri, Ru Li et al. „Thickness-Dependent Resonant Raman and E′ Photoluminescence Spectra of Indium Selenide and Indium Selenide/Graphene Heterostructures“. Journal of Physical Chemistry C 123, Nr. 24 (28.05.2019): 15345–53. http://dx.doi.org/10.1021/acs.jpcc.9b03457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Wagh, B. G., Anuradha B. Bhalerao, R. N. Bulakhe und C. D. Lokhande. „Cadmium indium selenide semiconducting nanofibers by single step electrochemical route“. Modern Physics Letters B 29, Nr. 06n07 (20.03.2015): 1540024. http://dx.doi.org/10.1142/s0217984915400242.

Der volle Inhalt der Quelle
Annotation:
The growth of ternary semiconductor thin films of cadmium indium selenide nanofibers has been carried out from aqueous solution of cadmium sulphate, indium trichloride, and selenium dioxide by electrochemical route. These thin films have been further optimized using photoelectrochemical cell (PEC). Optimized thin film has been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mohamad, S. A., Wan Jeffrey Basirun, Z. A. Ibrahim, A. K. Arof und Mehdi Ebadi. „Structure Characterization of Electrodeposited Zinc Selenide Thin Films“. Advanced Materials Research 264-265 (Juni 2011): 732–37. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.732.

Der volle Inhalt der Quelle
Annotation:
Crystalline thin of zinc selenide have been electrochemically deposited on conducting substrates of indium tin oxide, ITO glass. Initial investigation with voltammetry was done and shows that the zinc selenide films were stable towards oxidation. The best deposition potential obtained was at -0.95 V vs. Ag /AgCl while at lower deposition potentials, the films do not form well. Energy Dispersive Analysis and X-Ray spectrum indicate that the films deposited at 65oC and -0.95 V vs. Ag/AgCl have nearly stoichiometric Zn: Se ratio.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sun, Yuanhui, Shulin Luo, Xin-Gang Zhao, Koushik Biswas, Song-Lin Li und Lijun Zhang. „InSe: a two-dimensional material with strong interlayer coupling“. Nanoscale 10, Nr. 17 (2018): 7991–98. http://dx.doi.org/10.1039/c7nr09486h.

Der volle Inhalt der Quelle
Annotation:
Interlayer coupling in atomically thin, two-dimensional indium selenide (InSe) may have a significant impact on its properties, including large tunability in the band gap, height of band-edge state, phonon frequency, and high carrier mobility.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Jakhmola, Priyanka R., Garima Agarwal, Prafulla K. Jha und Satya Prakash Bhatnagar. „Nanorod Formation of Copper Indium (di) Selenide Nanorod Synthesize by Solvothermal Route“. Advanced Materials Research 1047 (Oktober 2014): 107–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1047.107.

Der volle Inhalt der Quelle
Annotation:
The compound belongs to I-III-VI2 group are promising material as an effective light-absorbing materials. Now a day, ternary chalcopyrite semiconductors, especially copper based I-III-VI2 semiconductors have attracted many investigators. They have several desirable features as absorbers in the thin film solar cells. In present work, copper indium (di) selenide have been prepared via solvothermal route. Several methods have been reported to prepare CuInSe2 nanostructures by solution route. In present work, tetragonal chalcopyrite copper indium (di) selenide nanorods has been synthesized by solvothermal method using ethylene diamine as a solvent. Structural analysis had been done by X-ray diffraction (XRD). The surface morphology of the as-grown nanorod has been studied using scanning electron microscopy. The bandgap of as grown nanorods is obtained from UV-Vis spectrum which will applicable to the solar cell devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Yang, Shuang, Cheng-Yan Xu, Li Yang, Sheng-Peng Hu und Liang Zhen. „Solution-phase synthesis of γ-In2Se3 nanoparticles for highly efficient photocatalytic hydrogen generation under simulated sunlight irradiation“. RSC Advances 6, Nr. 108 (2016): 106671–75. http://dx.doi.org/10.1039/c6ra21784b.

Der volle Inhalt der Quelle
Annotation:
Hexagonal indium selenide (In2Se3) nanoparticles were successfully synthesized by a hot-injection method using triethylene glycol as solvent, which have superior and stable photocatalytic hydrogen generation under simulated sunlight irradiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Chen, Tenghui, Zhongjun Li, Chunxiang Zhang, Zhenhong Wang, Mulin Luo, Yuan Zhang, Yachao Wang, Quanlan Xiao, Han Zhang und Jun Liu. „Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser“. Journal of Materials Chemistry C 9, Nr. 18 (2021): 5893–98. http://dx.doi.org/10.1039/d1tc00727k.

Der volle Inhalt der Quelle
Annotation:
A novel broadband two-dimensional material, indium selenide (InSe), is prepared and characterized in the mid-infrared wavelength region. Stable Q-switching pulses are obtained from a 2.8 μm Er-ZBLAN fiber laser based on the InSe saturable absorber.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

STOLL, S. L., E. G. GILLAN und A. R. BARRON. „ChemInform Abstract: Chemical Vapor Deposition of Gallium Selenide and Indium Selenide Nanoparticles.“ ChemInform 27, Nr. 51 (04.08.2010): no. http://dx.doi.org/10.1002/chin.199651219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kaminskii, V. M., Z. D. Kovalyuk, V. I. Ivanov, I. G. Tkachyuk und V. V. Netyaga. „Electrical Properties of Cd Doped InSe Crystals“. Фізика і хімія твердого тіла 19, Nr. 2 (03.05.2019): 159–62. http://dx.doi.org/10.15330/pcss.19.2.159-162.

Der volle Inhalt der Quelle
Annotation:
The measurements of electrical conductivity along (alternating electric field) and across (direct electric field)the crystallographic C axis of Cd‐doped indium selenide single crystals are carried out. The parameters of thehopping conductivity of InSe <Cd> are calculated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Rai, Akash, Vinod K. Sangwan, J. Tyler Gish, Mark C. Hersam und David G. Cahill. „Anisotropic thermal conductivity of layered indium selenide“. Applied Physics Letters 118, Nr. 7 (15.02.2021): 073101. http://dx.doi.org/10.1063/5.0042091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zheng, Kai, Heping Cui, Jiabing Yu und Xianping Chen. „Indium Selenide/Antimonene Heterostructure for Multifunctional Optoelectronics“. IEEE Transactions on Electron Devices 69, Nr. 3 (März 2022): 1155–61. http://dx.doi.org/10.1109/ted.2022.3140363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Trah, H. P., und V. Krämer. „Crystal structure of zinc indium selenide, ZnIn2Se4“. Zeitschrift für Kristallographie 173, Nr. 3-4 (Januar 1985): 199–203. http://dx.doi.org/10.1524/zkri.1985.173.3-4.199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kulakci, Mustafa, Tahir Colakoglu, Baris Ozdemir, Mehmet Parlak, Husnu Emrah Unalan und Rasit Turan. „Silicon nanowire–silver indium selenide heterojunction photodiodes“. Nanotechnology 24, Nr. 37 (23.08.2013): 375203. http://dx.doi.org/10.1088/0957-4484/24/37/375203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Geretovszky, Zs, K. Deppert, L. S. Karlsson, M. N. A. Karlsson, J. O. Malm und M. Mühlberg. „Aerosol Phase Generation of Indium–Selenide Nanoparticles“. Journal of Nanoscience and Nanotechnology 6, Nr. 3 (01.03.2006): 600–611. http://dx.doi.org/10.1166/jnn.2006.084.

Der volle Inhalt der Quelle
Annotation:
Results on the generation and heat treatment of In–Se nanoparticles, made by heterogeneous condensation of selenium on indium nanoparticles synthesised via the evaporation/condensation route are reported. In-situ aerosol measurements are complemented with ex-situ analysis, to provide structural, morphological, and compositional information on the In–Se nanoparticles. Our results indicate that prior to heat treatment In–Se nanoparticles have a shape in the aerosol phase, similar to an asymmetric dumbbell. The bigger particle of the dumbbell structure is made up of amorphous Se, while the overall composition of the polycrystalline smaller particle is around InSe. The smaller particle has an intrinsic structure, and consists of different InSe-compounds, with a decreasing In content towards the shell. The shape of the In–Se nanoparticles is different in the aerosol phase and on the surface of the samples. The observed variety of particle sizes and shapes on the sample surface is shown to be partly due to the agglomeration of the aerosol phase binaries (i.e., dumbbells) via coalescence on the surface of the sample and wetting of the sample surface by the Se nanoparticles. These processes make the bigger particle of the dumbbell structure appear almost perfectly hemispherical on the sample surfaces. During heat treatment at lower temperatures mainly the evaporative removal of the big Se particle of the dumbbell structure will take place. Annealing of the smaller particles starts to dominate at temperatures above 240 °C and makes the composition of the small particles closer to that of the thermodynamically most favoured In2Se3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Paraskevopoulos, K. M., C. Julien, M. Balkanski und C. Porte. „Photoluminescence spectra of Li-intercalated indium selenide“. Journal of Luminescence 42, Nr. 1 (Juni 1988): 15–20. http://dx.doi.org/10.1016/0022-2313(88)90060-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

El-Sayed, S. M. „Optical investigations of the indium selenide glasses“. Vacuum 72, Nr. 2 (Oktober 2003): 169–75. http://dx.doi.org/10.1016/s0042-207x(03)00139-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mar�, B., A. Segura und A. Chevy. „Tin-related shallow donor in indium selenide“. Applied Physics A Solids and Surfaces 46, Nr. 2 (Juni 1988): 125–29. http://dx.doi.org/10.1007/bf00615920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Riera, J., A. Segura und A. Chevy. „Photoluminescence in silicon-doped n-indium selenide“. Physica Status Solidi (a) 142, Nr. 1 (16.03.1994): 265–74. http://dx.doi.org/10.1002/pssa.2211420129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Thornton, John A., und T. C. Lommasson. „Magnetron reactive sputtering of copper-indium-selenide“. Solar Cells 16 (Januar 1986): 165–80. http://dx.doi.org/10.1016/0379-6787(86)90082-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

MASSACCESI, S., S. SANCHEZ und J. VEDEL. „ChemInform Abstract: Electrodeposition of Indium Selenide In2Se3.“ ChemInform 27, Nr. 51 (04.08.2010): no. http://dx.doi.org/10.1002/chin.199651021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lukyanyuk, V. K., M. V. Tovarnitskii und Z. D. Kovalyuk. „Transport properties of sodium intercalated indium selenide“. Physica Status Solidi (a) 104, Nr. 1 (16.11.1987): K41—K45. http://dx.doi.org/10.1002/pssa.2211040145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Mucha, I. „Phase diagram for the quasi-binary thallium(I) selenide–indium(III) selenide system“. Thermochimica Acta 550 (Dezember 2012): 1–4. http://dx.doi.org/10.1016/j.tca.2012.09.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mitzi, David B., Oki Gunawan, Teodor K. Todorov und D. Aaron R. Barkhouse. „Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 1996 (13.08.2013): 20110432. http://dx.doi.org/10.1098/rsta.2011.0432.

Der volle Inhalt der Quelle
Annotation:
While cadmium telluride and copper–indium–gallium–sulfide–selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1 GW yr −1 production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and scarce elements indium and tellurium has prompted concern about scalability towards the terawatt level. Despite recent advances in structurally related copper–zinc–tin–sulfide–selenide (CZTSSe) absorbers, in which indium from CIGSSe is replaced with more plentiful and lower cost zinc and tin, there is still a sizeable performance gap between the kesterite CZTSSe and the more mature CdTe and CIGSSe technologies. This review will discuss recent progress in the CZTSSe field, especially focusing on a direct comparison with analogous higher performing CIGSSe to probe the performance bottlenecks in Earth-abundant kesterite devices. Key limitations in the current generation of CZTSSe devices include a shortfall in open circuit voltage relative to the absorber band gap and secondarily a high series resistance, which contributes to a lower device fill factor. Understanding and addressing these performance issues should yield closer performance parity between CZTSSe and CdTe/CIGSSe absorbers and hopefully facilitate a successful launch of commercialization for the kesterite-based technology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Salloum, D., P. Gougeon und M. Potel. „Ho0.76In1.68Mo15Se19“. Acta Crystallographica Section E Structure Reports Online 62, Nr. 4 (08.03.2006): i83—i85. http://dx.doi.org/10.1107/s1600536806007446.

Der volle Inhalt der Quelle
Annotation:
The structure of holmium indium molybdenum selenide, Ho0.76In1.68Mo15Se19, isotypic with In2.9Mo15Se19 [Grüttner, Yvon, Chevrel, Potel, Sergent & Seeber (1979). Acta Cryst. B35, 285–292], is characterized by two cluster units Mo6Se i 8Se a 6 and Mo9Se i 11Se a 6 (where i = inner and a = apical) that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c and have point-group symmetry \overline{3} and \overline{6}, respectively. The clusters are interconnected through additional Mo—Se bonds. In the title compound, Ho3+ cations replace the trivalent indium observed in In2.9Mo15Se19, and a deficiency is observed on the monovalent indium site.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Kushwah, Nisha, G. Kedarnath, A. Wadawale, Gourab Karmakar, Sanjay Kumar und Amit P. Srivastava. „Synthesis and characterization of methyl indium 4,6-dimethyl-2-pyrimidyl selenolates and its utility for indium selenide, CuInSe2 nanostructures and indium selenide thin films“. Journal of Materials Research 37, Nr. 7 (01.04.2022): 1341–56. http://dx.doi.org/10.1557/s43578-022-00538-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Rella, R., P. Siciliano und A. Tepore. „Deep Levels in Doped Indium Selenide Single Crystals“. Materials Science Forum 203 (Februar 1996): 65–70. http://dx.doi.org/10.4028/www.scientific.net/msf.203.65.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chitra, Venkatapathy, Kalimuthu Ananthi und S. Vasantha. „Photoelectrochemical Behaviour of Copper Indium Selenide Thin Films“. Advanced Materials Research 678 (März 2013): 343–48. http://dx.doi.org/10.4028/www.scientific.net/amr.678.343.

Der volle Inhalt der Quelle
Annotation:
Copper Indium Selenide (CIS) thin films were pulse electrodeposited at room temperature and at different duty cycles in the range of 6 – 50 %. Deposition current density was kept constant at 5 ma cm-2 in the present work. The total deposition time was 60 min. The precursors used were AR grade 0.3 M of each CuCl2 and InCl3, along with 0.2 M of SeO2. Thickness of the films estimated by Mitutoyo surface profilometer varied in the range of 0.8 to 1.2 μm with increase of duty cycle. XRD patterns of CIS films deposited at different duty cycles exhibit the chalcopyrite structure. Composition of the films indicated Cu/In ratio is greater than 1. Optical absorption studies indicated a direct energy band gap of 0.95 eV. Surface morphology of the films indicated that the grain size increased from 15 nm to 40 nm as the duty cycle increased. It is observed that as the duty cycle increases, the resistvity increases from 1.0 ohm cm to 10 ohm cm. The films were used as photoelectrodes in 0.5 M polysulphide redox electrolyte (0.5 M each Na2S, NaOH, S). At 60 mW cm-2, an open circuit voltage of 0.465 V and short circuit current density of 3.87 mA cm-2 were observed for the films deposited at 50 % duty cycle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Segura, Alfredo. „Layered Indium Selenide under High Pressure: A Review“. Crystals 8, Nr. 5 (09.05.2018): 206. http://dx.doi.org/10.3390/cryst8050206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wang, Cheng, Xianhui Bu, Nanfeng Zheng und Pingyun Feng. „Indium selenide superlattices from (In10Se18)6– supertetrahedral clusters“. Chemical Communications, Nr. 13 (22.05.2002): 1344–45. http://dx.doi.org/10.1039/b203253h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Yang, Jiwoong, Jae-Yup Kim, Jung Ho Yu, Tae-Young Ahn, Hyunjae Lee, Tae-Seok Choi, Young-Woon Kim, Jin Joo, Min Jae Ko und Taeghwan Hyeon. „Copper–indium–selenide quantum dot-sensitized solar cells“. Physical Chemistry Chemical Physics 15, Nr. 47 (2013): 20517. http://dx.doi.org/10.1039/c3cp54270j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Tyrrell, Sophie, Małgorzata Swadźba-Kwaśny und Peter Nockemann. „Ionothermal, microwave-assisted synthesis of indium(iii) selenide“. Journal of Materials Chemistry A 2, Nr. 8 (2014): 2616. http://dx.doi.org/10.1039/c3ta14478j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Riera, J., A. Segura und A. Chevy. „Transport properties of silicon doped n-indium selenide“. Applied Physics A Solids and Surfaces 54, Nr. 5 (Mai 1992): 428–30. http://dx.doi.org/10.1007/bf00324166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie