Zeitschriftenartikel zum Thema „Incompressible and compressible flow“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Incompressible and compressible flow" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Crnojevic´, C., und V. D. Djordjevic´. „Correlated Compressible and Incompressible Channel Flows“. Journal of Fluids Engineering 119, Nr. 4 (01.12.1997): 911–15. http://dx.doi.org/10.1115/1.2819516.
Der volle Inhalt der QuelleChoi, Young-Pil. „Compressible Euler equations interacting with incompressible flow“. Kinetic and Related Models 8, Nr. 2 (März 2015): 335–58. http://dx.doi.org/10.3934/krm.2015.8.335.
Der volle Inhalt der QuellePretorius, J. J., A. G. Malan und J. A. Visser. „A flow network formulation for compressible and incompressible flow“. International Journal of Numerical Methods for Heat & Fluid Flow 18, Nr. 2 (27.03.2008): 185–201. http://dx.doi.org/10.1108/09615530810846338.
Der volle Inhalt der QuelleKim, Donguk, Minsoo Kim und Seungsoo Lee. „Extension of Compressible Flow Solver to Incompressible Flow Analysis“. Journal of the Korean Society for Aeronautical & Space Sciences 49, Nr. 6 (30.06.2021): 449–56. http://dx.doi.org/10.5139/jksas.2021.49.6.449.
Der volle Inhalt der QuelleVON ELLENRIEDER, KARL D., und BRIAN J. CANTWELL. „Self-similar, slightly compressible, free vortices“. Journal of Fluid Mechanics 423 (03.11.2000): 293–315. http://dx.doi.org/10.1017/s0022112000001853.
Der volle Inhalt der QuelleAboelkassem, Yasser, und Georgios H. Vatistas. „New Model for Compressible Vortices“. Journal of Fluids Engineering 129, Nr. 8 (26.02.2007): 1073–79. http://dx.doi.org/10.1115/1.2746897.
Der volle Inhalt der QuelleTIMMERMANS, MARY-LOUISE E., JOHN R. LISTER und HERBERT E. HUPPERT. „Compressible particle-driven gravity currents“. Journal of Fluid Mechanics 445 (16.10.2001): 305–25. http://dx.doi.org/10.1017/s0022112001005705.
Der volle Inhalt der QuelleMarner, F., M. Scholle, D. Herrmann und P. H. Gaskell. „Competing Lagrangians for incompressible and compressible viscous flow“. Royal Society Open Science 6, Nr. 1 (Januar 2019): 181595. http://dx.doi.org/10.1098/rsos.181595.
Der volle Inhalt der QuelleSong, Charles C. S., und Mingshun Yuan. „A Weakly Compressible Flow Model and Rapid Convergence Methods“. Journal of Fluids Engineering 110, Nr. 4 (01.12.1988): 441–45. http://dx.doi.org/10.1115/1.3243575.
Der volle Inhalt der QuelleKwon, O. Key, R. H. Pletcher und R. A. Delaney. „Solution Procedure for Unsteady Two-Dimensional Boundary Layers“. Journal of Fluids Engineering 110, Nr. 1 (01.03.1988): 69–75. http://dx.doi.org/10.1115/1.3243513.
Der volle Inhalt der QuelleLee, Cheong, Kim und Kim. „Numerical Analysis and Characterization of Surface Pressure Fluctuations of High-Speed Trains Using Wavenumber–Frequency Analysis“. Applied Sciences 9, Nr. 22 (15.11.2019): 4924. http://dx.doi.org/10.3390/app9224924.
Der volle Inhalt der QuelleDanabasoglu, G., A. Saati und S. Biringen. „Three-dimensional simulations of incompressible and compressible flow stability“. Computer Physics Communications 65, Nr. 1-3 (April 1991): 76–83. http://dx.doi.org/10.1016/0010-4655(91)90157-g.
Der volle Inhalt der QuelleWang, Dehua, und Cheng Yu. „Incompressible Limit for the Compressible Flow of Liquid Crystals“. Journal of Mathematical Fluid Mechanics 16, Nr. 4 (18.07.2014): 771–86. http://dx.doi.org/10.1007/s00021-014-0185-2.
Der volle Inhalt der QuelleDing, Shijin, Jinrui Huang, Huanyao Wen und Ruizhao Zi. „Incompressible limit of the compressible nematic liquid crystal flow“. Journal of Functional Analysis 264, Nr. 7 (April 2013): 1711–56. http://dx.doi.org/10.1016/j.jfa.2013.01.011.
Der volle Inhalt der QuelleMoreira, E. A., M. D. M. Innocentini und J. R. Coury. „Permeability of ceramic foams to compressible and incompressible flow“. Journal of the European Ceramic Society 24, Nr. 10-11 (September 2004): 3209–18. http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.014.
Der volle Inhalt der QuelleZienkiewicz, O. C., J. Szmelter und J. Peraire. „Compressible and incompressible flow; An algorithm for all seasons“. Computer Methods in Applied Mechanics and Engineering 78, Nr. 1 (Januar 1990): 105–21. http://dx.doi.org/10.1016/0045-7825(90)90155-f.
Der volle Inhalt der QuelleBENDAHMANE, MOSTAFA, ZIAD KHALIL und MAZEN SAAD. „CONVERGENCE OF A FINITE VOLUME SCHEME FOR GAS–WATER FLOW IN A MULTI-DIMENSIONAL POROUS MEDIUM“. Mathematical Models and Methods in Applied Sciences 24, Nr. 01 (31.10.2013): 145–85. http://dx.doi.org/10.1142/s0218202513500498.
Der volle Inhalt der QuelleOggian, T., D. Drikakis, D. L. Youngs und R. J. R. Williams. „Computing multi-mode shock-induced compressible turbulent mixing at late times“. Journal of Fluid Mechanics 779 (19.08.2015): 411–31. http://dx.doi.org/10.1017/jfm.2015.392.
Der volle Inhalt der QuelleGao, Yuan, Liuming Yang, Yang Yu, Guoxiang Hou und Zhongbao Hou. „Improved simplified and highly stable lattice Boltzmann methods for incompressible flows“. International Journal of Modern Physics C 32, Nr. 06 (28.02.2021): 2150077. http://dx.doi.org/10.1142/s0129183121500777.
Der volle Inhalt der QuelleSahay, Pratap N., und Tobias M. Müller. „Diffusion in deformable porous media: Incompressible flow limit and implications for permeability estimation from microseismicity“. GEOPHYSICS 85, Nr. 2 (24.02.2020): A13—A17. http://dx.doi.org/10.1190/geo2019-0510.1.
Der volle Inhalt der QuelleNasu, Shoichi, und Mutsuto Kawahara. „An Analysis of Compressible Viscous Flows Around a Body Using Finite Element Method“. Advanced Materials Research 403-408 (November 2011): 461–65. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.461.
Der volle Inhalt der QuelleBrower, W. B., E. Eisler, E. J. Filkorn, J. Gonenc, C. Plati und J. Stagnitti. „On the Compressible Flow Through an Orifice“. Journal of Fluids Engineering 115, Nr. 4 (01.12.1993): 660–64. http://dx.doi.org/10.1115/1.2910195.
Der volle Inhalt der QuelleZhang, Ting, Baochang Shi, Zhenhua Chai und Fumei Rong. „Lattice BGK Model for Incompressible Axisymmetric Flows“. Communications in Computational Physics 11, Nr. 5 (Mai 2012): 1569–90. http://dx.doi.org/10.4208/cicp.290810.050811a.
Der volle Inhalt der QuelleYu, Qin, Chai, Huang und Liu. „The Effect of Compressible Flow on Heat Transfer Performance of Heat Exchanger by Computational Fluid Dynamics (CFD) Simulation“. Entropy 21, Nr. 9 (25.08.2019): 829. http://dx.doi.org/10.3390/e21090829.
Der volle Inhalt der QuelleTabrizi, Amir Bashirzadeh, und Binxin Wu. „The role of compressibility in computing noise generated at a cavitating orifice“. International Journal of Aeroacoustics 18, Nr. 1 (27.11.2018): 73–91. http://dx.doi.org/10.1177/1475472x18812801.
Der volle Inhalt der QuellePark, Sunho, Woochan Seok, Sung Taek Park, Shin Hyung Rhee, Yohan Choe, Chongam Kim, Ji-Hye Kim und Byoung-Kwon Ahn. „Compressibility Effects on Cavity Dynamics behind a Two-Dimensional Wedge“. Journal of Marine Science and Engineering 8, Nr. 1 (13.01.2020): 39. http://dx.doi.org/10.3390/jmse8010039.
Der volle Inhalt der QuelleHsu, Uzu Kuei, Chang Hsien Tai und Chien Hsiung Tsai. „All Speed and High-Resolution Scheme Applied to Three-Dimensional Multi-Block Complex Flowfield System“. Journal of Mechanics 20, Nr. 1 (März 2004): 13–25. http://dx.doi.org/10.1017/s1727719100004007.
Der volle Inhalt der QuelleTurgeon, E., und D. Pelletier. „Unified Formulation for Compressible-Incompressible Flow Simulation with Mesh Adaptation“. AIAA Journal 39, Nr. 12 (Dezember 2001): 2425–27. http://dx.doi.org/10.2514/2.1260.
Der volle Inhalt der QuelleTurgeon, E., und D. Pelletier. „Unified formulation for compressible-incompressible flow simulation with mesh adaptation“. AIAA Journal 39 (Januar 2001): 2425–27. http://dx.doi.org/10.2514/3.15049.
Der volle Inhalt der QuelleIslam, Md Tajul. „Compressibility Effects in 2d Wall Heating Microchannel flow“. GANIT: Journal of Bangladesh Mathematical Society 35 (28.06.2016): 57–71. http://dx.doi.org/10.3329/ganit.v35i0.28567.
Der volle Inhalt der QuelleKeogh, J., G. Doig und S. Diasinos. „Flow compressibility effects around an open-wheel racing car“. Aeronautical Journal 118, Nr. 1210 (Dezember 2014): 1409–31. http://dx.doi.org/10.1017/s0001924000010125.
Der volle Inhalt der QuelleDeolmi, Giulia, Wolfgang Dahmen und Siegfried Müller. „Effective boundary conditions for compressible flows over rough boundaries“. Mathematical Models and Methods in Applied Sciences 25, Nr. 07 (14.04.2015): 1257–97. http://dx.doi.org/10.1142/s0218202515500323.
Der volle Inhalt der QuelleBlaisdell, G. A., N. N. Mansour und W. C. Reynolds. „Compressibility effects on the growth and structure of homogeneous turbulent shear flow“. Journal of Fluid Mechanics 256 (November 1993): 443–85. http://dx.doi.org/10.1017/s0022112093002848.
Der volle Inhalt der QuelleLiu, L. Q., Y. P. Shi, J. Y. Zhu, W. D. Su, S. F. Zou und J. Z. Wu. „Longitudinal–transverse aerodynamic force in viscous compressible complex flow“. Journal of Fluid Mechanics 756 (01.09.2014): 226–51. http://dx.doi.org/10.1017/jfm.2014.403.
Der volle Inhalt der QuelleBazdidi-Tehrani, F., A. Abouata, M. Hatami und N. Bohlooli. „Investigation of effects of compressibility, geometric and flow parameters on the simulation of a synthetic jet behaviour“. Aeronautical Journal 120, Nr. 1225 (März 2016): 521–46. http://dx.doi.org/10.1017/aer.2016.8.
Der volle Inhalt der QuellePérez-Ràfols, F., P. Wall und A. Almqvist. „On compressible and piezo-viscous flow in thin porous media“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, Nr. 2209 (Januar 2018): 20170601. http://dx.doi.org/10.1098/rspa.2017.0601.
Der volle Inhalt der QuelleGibis, Tobias, Christoph Wenzel, Markus Kloker und Ulrich Rist. „Self-similar compressible turbulent boundary layers with pressure gradients. Part 2. Self-similarity analysis of the outer layer“. Journal of Fluid Mechanics 880 (09.10.2019): 284–325. http://dx.doi.org/10.1017/jfm.2019.672.
Der volle Inhalt der QuelleMANELA, A., und I. FRANKEL. „On the compressible Taylor–Couette problem“. Journal of Fluid Mechanics 588 (24.09.2007): 59–74. http://dx.doi.org/10.1017/s0022112007007422.
Der volle Inhalt der QuelleFannon, J. S., I. R. Moyles und A. C. Fowler. „Application of the compressible -dependent rheology to chute and shear flow instabilities“. Journal of Fluid Mechanics 864 (14.02.2019): 1026–57. http://dx.doi.org/10.1017/jfm.2019.43.
Der volle Inhalt der QuellePark, Sunho, und Shin Hyung Rhee. „Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics“. Journal of Mechanical Science and Technology 29, Nr. 8 (August 2015): 3287–96. http://dx.doi.org/10.1007/s12206-015-0727-4.
Der volle Inhalt der QuelleRashad, Ramy, Federico Califano, Frederic P. Schuller und Stefano Stramigioli. „Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow“. Journal of Geometry and Physics 164 (Juni 2021): 104199. http://dx.doi.org/10.1016/j.geomphys.2021.104199.
Der volle Inhalt der QuelleWang, Jianchun, Yipeng Shi, Lian-Ping Wang, Zuoli Xiao, X. T. He und Shiyi Chen. „Effect of compressibility on the small-scale structures in isotropic turbulence“. Journal of Fluid Mechanics 713 (17.10.2012): 588–631. http://dx.doi.org/10.1017/jfm.2012.474.
Der volle Inhalt der QuelleAmiet, R. K. „On the second-order solution to the Sears problem for compressible flow“. Journal of Fluid Mechanics 254 (September 1993): 213–28. http://dx.doi.org/10.1017/s0022112093002095.
Der volle Inhalt der QuelleAbou-Haidar, N. I., und S. L. Dixon. „Measurement of Compressible Flow Pressure Losses in Wye-Junctions“. Journal of Turbomachinery 116, Nr. 3 (01.07.1994): 535–41. http://dx.doi.org/10.1115/1.2929442.
Der volle Inhalt der QuelleWittbrodt, M. J., und M. J. Pechersky. „A Hydrodynamic Analysis of Fluid Flow Between Meshing Spur Gear Teeth“. Journal of Mechanisms, Transmissions, and Automation in Design 111, Nr. 3 (01.09.1989): 395–401. http://dx.doi.org/10.1115/1.3259012.
Der volle Inhalt der QuelleXiao, Feng. „Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow“. Journal of Computational Physics 195, Nr. 2 (April 2004): 629–54. http://dx.doi.org/10.1016/j.jcp.2003.10.014.
Der volle Inhalt der QuelleMitsuya, Y., und S. Fukui. „Stokes Roughness Effects on Hydrodynamic Lubrication. Part I—Comparison Between Incompressible and Compressible Lubricating Films“. Journal of Tribology 108, Nr. 2 (01.04.1986): 151–58. http://dx.doi.org/10.1115/1.3261153.
Der volle Inhalt der QuelleRossow, Cord-Christian. „Efficient computation of compressible and incompressible flows“. Journal of Computational Physics 220, Nr. 2 (Januar 2007): 879–99. http://dx.doi.org/10.1016/j.jcp.2006.05.034.
Der volle Inhalt der QuelleJiang, Ning, Yi-Long Luo und Shaojun Tang. „On well-posedness of Ericksen–Leslie’s parabolic–hyperbolic liquid crystal model in compressible flow“. Mathematical Models and Methods in Applied Sciences 29, Nr. 01 (Januar 2019): 121–83. http://dx.doi.org/10.1142/s0218202519500052.
Der volle Inhalt der QuelleMarjanovic´, Predrag, und Vladan Djordjevic´. „On the Compressible Flow Losses Through Abrupt Enlargements and Contractions“. Journal of Fluids Engineering 116, Nr. 4 (01.12.1994): 756–62. http://dx.doi.org/10.1115/1.2911846.
Der volle Inhalt der Quelle