Auswahl der wissenschaftlichen Literatur zum Thema „Incompressible and compressible flow“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Incompressible and compressible flow" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Incompressible and compressible flow"

1

Crnojevic´, C., und V. D. Djordjevic´. „Correlated Compressible and Incompressible Channel Flows“. Journal of Fluids Engineering 119, Nr. 4 (01.12.1997): 911–15. http://dx.doi.org/10.1115/1.2819516.

Der volle Inhalt der Quelle
Annotation:
Compressible flow in channels of slowly varying cross section at moderately high Reynolds numbers is treated in the paper by employing some Stewartson-type transformations that convert the problem into an incompressible one. Both adiabatic flow and isothermal flow are considered, and a Poiseuille-type incompressible solution is mapped onto compressible plane in order to generate some exact solutions of the compressible governing equations. The results show striking effects that viscosity may have upon the flow characteristics in this case, in comparison with more conventional high Reynolds number flows.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Choi, Young-Pil. „Compressible Euler equations interacting with incompressible flow“. Kinetic and Related Models 8, Nr. 2 (März 2015): 335–58. http://dx.doi.org/10.3934/krm.2015.8.335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pretorius, J. J., A. G. Malan und J. A. Visser. „A flow network formulation for compressible and incompressible flow“. International Journal of Numerical Methods for Heat & Fluid Flow 18, Nr. 2 (27.03.2008): 185–201. http://dx.doi.org/10.1108/09615530810846338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kim, Donguk, Minsoo Kim und Seungsoo Lee. „Extension of Compressible Flow Solver to Incompressible Flow Analysis“. Journal of the Korean Society for Aeronautical & Space Sciences 49, Nr. 6 (30.06.2021): 449–56. http://dx.doi.org/10.5139/jksas.2021.49.6.449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

VON ELLENRIEDER, KARL D., und BRIAN J. CANTWELL. „Self-similar, slightly compressible, free vortices“. Journal of Fluid Mechanics 423 (03.11.2000): 293–315. http://dx.doi.org/10.1017/s0022112000001853.

Der volle Inhalt der Quelle
Annotation:
Exact and numerical similarity solutions for compressible perturbations to an incompressible, two-dimensional, axisymmetric vortex reference flow are presented. The reference flow consists of a set of two-dimensional, self-similar, incompressible vortices. Similarity variables, which give explicit expressions for the decay rates of the velocities and thermodynamic variables in the vortex flows, are used to reduce the governing partial differential equations to a set of ordinary differential equations. The ODEs are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are employed to study the dependences of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Additionally, several integral relations, which allow one to trace the energy transfer in a slightly compressible vortex, are derived.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aboelkassem, Yasser, und Georgios H. Vatistas. „New Model for Compressible Vortices“. Journal of Fluids Engineering 129, Nr. 8 (26.02.2007): 1073–79. http://dx.doi.org/10.1115/1.2746897.

Der volle Inhalt der Quelle
Annotation:
A new analytical solution for self-similar compressible vortices is derived in this paper. Based on the previous incompressible formulation of intense vortices, we derived a theoretical model that includes density and temperature variations. The governing equations are simplified assuming strong vortex conditions. Part of the hydrodynamic problem (mass and momentum) is shown to be analogous to the incompressible kind and as such the velocity is obtained through a straightforward variable transformation. Since all the velocity components are bounded in the radial direction, the density and pressure are then determined by standard numerical integration without the usual stringent simplification for the radial velocity. While compressibility is shown not to affect the tangential velocity, it influences only the meridional flow (radial and axial velocities). The temperature, pressure, and density are found to decrease along the converging flow direction. The traditional homentropic flow hypothesis, often employed in vortex stability and optical studies, is shown to undervalue the density and greatly overestimate the temperature. Comparable to vorticity diffusion balance for the incompressible case, the incoming flow carries the required energy to offset the contributions of conduction, viscous dissipation, and material expansion, thus keeping the temperature steady. This model is general and can be used to obtain a compressible version for all classical previous incompressible analysis from the literature such as Rankine, Burgers, Taylor, and Sullivan vortices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

TIMMERMANS, MARY-LOUISE E., JOHN R. LISTER und HERBERT E. HUPPERT. „Compressible particle-driven gravity currents“. Journal of Fluid Mechanics 445 (16.10.2001): 305–25. http://dx.doi.org/10.1017/s0022112001005705.

Der volle Inhalt der Quelle
Annotation:
Large-scale particle-driven gravity currents occur in the atmosphere, often in the form of pyroclastic flows that result from explosive volcanic eruptions. The behaviour of these gravity currents is analysed here and it is shown that compressibility can be important in flow of such particle-laden gases because the presence of particles greatly reduces the density scale height, so that variations in density due to compressibility are significant over the thickness of the flow. A shallow-water model of the flow is developed, which incorporates the contribution of particles to the density and thermodynamics of the flow. Analytical similarity solutions and numerical solutions of the model equations are derived. The gas–particle mixture decompresses upon gravitational collapse and such flows have faster propagation speeds than incompressible currents of the same dimensions. Once a compressible current has spread sufficiently that its thickness is less than the density scale height it can be treated as incompressible. A simple ‘box-model’ approximation is developed to determine the effects of particle settling. The major effect is that a small amount of particle settling increases the density scale height of the particle-laden mixture and leads to a more rapid decompression of the current.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Marner, F., M. Scholle, D. Herrmann und P. H. Gaskell. „Competing Lagrangians for incompressible and compressible viscous flow“. Royal Society Open Science 6, Nr. 1 (Januar 2019): 181595. http://dx.doi.org/10.1098/rsos.181595.

Der volle Inhalt der Quelle
Annotation:
A recently proposed variational principle with a discontinuous Lagrangian for viscous flow is reinterpreted against the background of stochastic variational descriptions of dissipative systems, underpinning its physical basis from a different viewpoint. It is shown that additional non-classical contributions to the friction force occurring in the momentum balance vanish by time averaging. Accordingly, the discontinuous Lagrangian can alternatively be understood from the standpoint of an analogous deterministic model for irreversible processes of stochastic character. A comparison is made with established stochastic variational descriptions and an alternative deterministic approach based on a first integral of Navier–Stokes equations is undertaken. The applicability of the discontinuous Lagrangian approach for different Reynolds number regimes is discussed considering the Kolmogorov time scale. A generalization for compressible flow is elaborated and its use demonstrated for damped sound waves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Song, Charles C. S., und Mingshun Yuan. „A Weakly Compressible Flow Model and Rapid Convergence Methods“. Journal of Fluids Engineering 110, Nr. 4 (01.12.1988): 441–45. http://dx.doi.org/10.1115/1.3243575.

Der volle Inhalt der Quelle
Annotation:
A weakly compressible flow model for small Mach number flows is applied to the computation of steady and unsteady inviscid flows. The equations of continuity and motion are decoupled from the energy equation, but, unlike the equations for incompressible fluids, these equations retain the ability to represent rapidly changing flows such as hydraulic transients and hydroacoustics. Two methods to speed up the process of convergence when an explicit method is used to calculate steady incompressible flows are proposed. The first method which is quite similar to the artificial compressiblity method is to assume an arbitrarily small sound speed (equivalent to large Mach number) to speed up the convergence. Any positive finite number may be used for M. One disadvantage of this method is the contamination of the steady flow solution by acoustic noise that may reverberate in the flow field for some time after the steady flow has been essentially established. The second method is based on the concept of valve stroking or boundary control. Certain boundary stroking functions that will unify the hydroacoustic and hydrodynamic processes can be found by using the inverse method of classical hydraulic transients. This method yields uncontaminated steady flow solution very rapidly independent of the Mach number.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kwon, O. Key, R. H. Pletcher und R. A. Delaney. „Solution Procedure for Unsteady Two-Dimensional Boundary Layers“. Journal of Fluids Engineering 110, Nr. 1 (01.03.1988): 69–75. http://dx.doi.org/10.1115/1.3243513.

Der volle Inhalt der Quelle
Annotation:
An accurate and reliable solution procedure is presented for solving the two-dimensional, compressible, unsteady boundary layer equations. The procedure solves the governing equations in a coupled manner using a fully implicit finite-difference numerical algorithm. Several unsteady compressible and incompressible laminar flows are considered. Example results for two unsteady incompressible turbulent flows are also included. An algebraic mixing length closure model is used for the turbulent flow calculations. The computed results compare favorably with experimental data and available analytical/numerical solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Incompressible and compressible flow"

1

Blank, Henrik. „Numerical methods for compressible and incompressible flow“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yang, Zhiyan. „Numerical simulation of incompressible and compressible flow“. Thesis, University of Sheffield, 1989. http://etheses.whiterose.ac.uk/3485/.

Der volle Inhalt der Quelle
Annotation:
This thesis describes the development of a numerical solution procedure which is valid for both incompressible flow and compressible flow at any Mach number. Most of the available numerical methods are for incompressible flow or compressible flow only and density is usually chosen as a main dependent variable by almost all the methods developed for compressible flow. This practice limits the range of the applicability of these methods since density changes can be very small when Mach number is low. Even for high Mach number flows the existing time-dependent methods may be inefficient and costly when only the finial steady-state is of concern. The presently developed numerical solution procedure, which is based on the SIMPLE algorithm, solves the steady-state form of the Navier-stokes equations, and pressure is chosen as a main dependent variable since the pressure changes are always relatively larger than the density changes. This choice makes it possible that the same set of variables can be used for both incompressible and compressible flows. It is believed that Reynolds stress models would give better performance in some cases such as recirculating flow, highly swirling flow and so on where the widely used two equation k-e model performs poorly. Hence, a comparative study of a Reynolds stress model and the k-e model has been undertaken to assess their performance in the case of highly swirling flows in vortex throttles. At the same time the relative performance of different wall treatments is also presented. It is generally accepted that no boundary conditions should be specified at the outflow boundary when the outflow is supersonic, and all the variables can be obtained by extrapolation. However, it has been found that this established principle on the outflow boundary conditions is misleading, and at least one variable should be specified at the outflow boundary. It is also shown that the central differencing scheme should be used for the pressure gradient no matter whether it is subsonic or supersonic flow.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wadey, Philip David. „Goetler vortex instabilities of incompressible and compressible boundary layers“. Thesis, University of Exeter, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Baghaei, Masoud. „Research on fluidic oscillators under incompressible and compressible flow conditions“. Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669607.

Der volle Inhalt der Quelle
Annotation:
One of the main advantages of fluidic oscillators is that they do not have moving parts, which brings high reliability whenever being used in real applications. To use these devices in real applications, it is necessary to evaluate their performance, since each application requires a particular injected fluid momentum and frequency. In this PhD., the performance of a given fluidic oscillator is evaluated at different Reynolds numbers via a 3D-computational fluid dynamics (CFD) analysis under incompressible and compressible flow conditions. In the first stage, the net momentum applied to the incoming jet is compared with the dynamic maximum stagnation pressure in the mixing chamber, to the dynamic output mass flow, to the dynamic feedback channels mass flow, to the pressure acting to both feedback channels outlets, and to the mixing chamber inlet jet oscillation angle. A perfect correlation between these parameters is obtained, therefore indicating the oscillation is triggered by the pressure momentum term applied to the jet at the feedback channels outlets. The stagnation pressure fluctuations appearing at the mixing chamber inclined walls are responsible for the pressure momentum term acting at the feedback channels outlets, thus it is proved that the oscillations are pressure-driven. In the second stage, several performance parameters were numerically evaluated as a function of different internal modifications via using 3D-CFD simulations. The evaluation is based on studying the output mass flow frequency and amplitude whenever several internal geometry parameters are modified. The geometry modifications considered were the mixing chamber inlet and outlet widths, and the mixing chamber inlet and outlet wall inclination angles. The concept behind this is, to evaluate how much the fluidic oscillator internal dimensions affect the device's main characteristics, and to analyze which parts of the oscillator produce a higher impact on the fluidic oscillator output characteristics. For the different internal modifications, evaluated, special care is taken in studying the forces required to flip the jet. The entire study is performed for three different Reynolds numbers, 8711, 16034 and 32068. Among the conclusions reached it is to be highlighted that, for a given Reynolds number, modifying the internal shape affects the oscillation frequencies and amplitudes. Any oscillator internal modification generates a much relevant effect as Reynolds number increases. Under all conditions studied, it was observed that the fluidic oscillator is pressure-driven under incompressible flow conditions as discussed in the first and second stages. In the third stage, the feedback channel effect on the oscillator output mass flow frequency and amplitude under compressible flow conditions were evaluated. In order to bring light to this point, a set of three dimensional Direct Numerical Simulations under compressible flow conditions, are introduced in the present stage, four different feedback channel lengths and two inlet fluid velocities are considered. From the results obtained, it was observed that as the inlet velocity increases, the fluidic oscillator output mass flow frequency and amplitude increase. An increase of the feedback channel length decreases the output mass flow oscillating frequency. At high feedback channel lengths, the form of the main oscillation tends to disappear, the jet inside the mixing chamber simply actuates at high frequencies, for these cases, the mass flow and pressure signals are very scattered due to the pressure waves appearing on mixing chamber converging surfaces and both feedback channels at the same time. Once the FC length exceeds a certain threshold, the oscillation stops. Under compressible conditions, the oscillations are pressure-driven as previously stated for the incompressible cases. The forces due to the pressure are much stronger than the mass flow flowing along the feedback channels.
El principal avantatge dels oscil·ladors fluídics es que no te parts mòbils, i això fa que sigui més fiable en aplicacions reals. Per tal d'aplicar aquests oscil·ladors en un cas concret, es necessari avaluar el seu comportament, doncs cada cas concret necessita una freqüència i quantitat de moviment donades. En el present doctorat s'ha analitzat mitjançant 3D-CFD, una configuració de oscil·lador fluídic per diferents números de Reynolds, diferents geometries internes i considerant el fluid com incompressible i compressible. Inicialment, la quantitat de moviment aplicada al jet entrant a la cambra de barreja, es comparada amb la pressió d'estancament dinàmica a les parets convergents de la cambra de barreja, amb el cabal màssic dinàmic que surt del actuador, amb el cabal màssic dinàmic que passa per els canals de realimentació, amb la pressió dinàmica que hi ha a la sortida dels canals de realimentació i amb el angle de oscil·lació del jet a l'entrada de la cambra de barreja. Tots aquests paràmetres es va veure que estaven correlacionats i això indicava que el origen de les oscil·lacions del jet era únic i era la pressió d'estancament a les parets convergents de la cambra de barreja, provant que les oscil·lacions son dirigides per gradients de pressió. Posteriorment es va fer el mateix tipus de estudi però modificant la amplada i angle de inclinació a l'entrada de la cambra de barreja i també modificant la amplada i angle de inclinació de les parets de sortida de la cambra de barreja. Aquestes quatre modificacions de la geometria interna es van fer per tres números de Reynolds diferents, 8711, 16034 i 32068. Entre les conclusions obtingudes cal destacar que, la freqüència i amplitud de oscil·lació del jet a la sortida del actuador pot ser modificada al variar les dimensions i angles interns de la cambra de barreja. Independentment del número de Reynolds estudiat i de la modificació interna considerada, es va comprovar que les oscil·lacions estaven dirigides per els gradients de pressió existents entre les dos sortides dels conductes de realimentació. L'efecte generat per qualsevol modificació interna era sempre més rellevant a números de Reynolds alts. En la tercera fase de la tesi el fluid es va considerar com a compressible subsònic, i es va avaluar els efectes de la modificació de la longitud dels canals de realimentació, sobre la freqüència i amplitud del flux que surt del oscil·lador. Quatre diferents longituds i dos números de Mach van ser avaluats. Al augmentar la longitud del canal de realimentació, la freqüència i amplitud de la oscil·lació disminueix, la oscil·lació tendeix a ser mes caòtica, apareixen altes freqüències que fan que el jet fluctuï en lloc de oscil·lar, de fet a partir de una certa longitud les oscil·lacions desapareixen i només hi han fluctuacions. Aquestes fluctuacions apareixen abans per elevats números de Mach. Les oscil·lacions son degudes a gradients de pressió, al igual que en el cas de fluid incompressible. De fet, per fluid compressible, el cabal màssic que passa per els canals de realimentació, juga un paper menys rellevant que en el cas de fluid incompressible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

RONZANI, ERNESTO RIBEIRO. „NUMERICAL SOLUTION OF COMPRESSIBLE AND INCOMPRESSIBLE FLOW IN IRREGULAR GEOMETRIES“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18648@1.

Der volle Inhalt der Quelle
Annotation:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho propõe um método numérico de solução de escoamentos de fluidos compressíveis e incompressíveis a qualquer número de Mach em geometrias irregulares. Um sistema bidimensional de coordenadas curvilíneas não-ortogonais,coincidentes com os contornos físicos é utilizado. Os componentes cartesianos de velocidade são usados nas equações da quantidade de movimento e os covariantes na equação da continuidade. Seleciona-se a técnica de volumes finitos para discretizar as equações de conservação relacionadas aos princípios físicos, em regime permanente devido esta preservar a propriedade conservativa das equações e a sua con sistência física no processo numérico. Adota-se a configuração de malha co-localizada, avaliando-se todas as variáveis dependentes nos pontos centrais dos volumes são avaliados com esquemas Power-Law e Quick. Especial atenção é dada ao tratamento numérico das condições de contorno. O problema do acoplamento massa específica-pressão-velocidade é solucionado usando-se uma combinação das equações da continuidade, de quantidade de movimento linear e de uma equação de estado, gerando duas equações de correção da pressão. A primeira corrige a massa específica e a pressão, a segunda, o fluxo de massa e a velocidade. Propõe-se uma modificação da equação da correção da velocidade usando um termo de compensação do erro obtido na sua avaliação a fim de acelerar a convergência. Utilizam-se vários tipos de interpolação da massa específica na face, para minimizar as atenuações das variáveis, causadas pela falsa difusão. Para a solução das equações algébricas resultantes usa-se o algoritmo TDMA linha por linha e um processo de correção por blocos para acelerar a convergência. O método proposto é verificado em seis problemas testes, através da comparação com os resultados analíticos e numéricos disponíveis na literatura.
The present work consists in the development of a numerical method of solution of compressible and incompressible fluid flow for all speed in iregular geometries. A boundary-fitted two-dimensional nonorthogonal curvilinear coordinate systeam is utilized. The cartesian velocity components are the dependent variables in the momentum equations and covariant velocity components are used in the continuity equation. The finite-volume technique was selected to discretuze the steady-state physical phenomenon conservation equations, since this method keeps the conservative property of the equations and its physical consistency in the numerical process. A nonstaggered grid was employed, and all dependent variables are evaluated at the cell center points, which divides the physical domain. The convection-diffusion fluxes at the control volumes faces are evaluated with the Power Law and Quick shemes. Special attention is paid to the numerical treatment of boundary conditions. The problem of velocity-pressure-density coupling is solved using a combination of continuity, momentum equations and state equation resulting in two pressure correction equations. The first equation corrects the density and the pressure, the second equation corrects the mass flux and the velocity. A modification in the velocity correction equations is proposed using a compensationterm to accelerate the convergence. Several types of interpolation of the face density are used to reduce variable atenuations, caused by false diffusion. For the solution of the resulting algebric equations,the line-by-line TDMA algorith is used as well as a block-correction method to accelerate the convergence. The proposed method is verified on six test problems,by comparing the present results with analytical and numerical results avaiable in the literature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kho, Cedric. „A unified formulation for mixed incompressible/compressible flows“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ44017.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tain, Ludovic. „Compressor leading edges in incompressible and compressible flows“. Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/272432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chinarak, Theerarak. „Development of a time-based mass flow controller for compressible and incompressible fluids“. Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503923.

Der volle Inhalt der Quelle
Annotation:
In this thesis a new type of Mass Flow Controller (MFC) is designed, constructed and used. Whilst existing MFCs rely on either pressure loss or temperature rise measurements to estimate and control flows, this new device is based on measuring time, which is more easily and accurately monitored. The device adopts the 'bucket and stopwatch' method to deliver specific and constant masses at pre-set time intervals. By alerting the time intervals, the mass flow is precisely controlled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Huber, Jamison Jared. „Numerical Simulations of Incompressible and Compressible Transitional Turbine Flows“. Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27124.

Der volle Inhalt der Quelle
Annotation:
Accurate and reliable turbulence and transition models are needed for prediction heating loads in the hot section of the turbine, and predicting aerodynamic losses when designing new blade profiles. Two dimensional compressible flow simulations were conducted at North Dakota State University on a first stage turbine vane design. Surface pressure results were compared with experimental data collected at the University of North Dakota. Results showed an under prediction of the surface pressure on the suction surface of the vane. Two and three dimensional compressible flow simulations were also conducted at NDSU on an incident tolerant blade design to look at the effect of incidence angle, Reynolds number, and turbulence intensity on transition. Results from these simulations were compared with experimental data collected at UND. The results show good agreement at higher Reynolds numbers with discrepancies being seen on the suction surface of the blade at lower Reynolds numbers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pattinson, John. „A cut-cell, agglomerated-multigrid accelerated, Cartesian mesh method for compressible and incompressible flow“. Pretoria : [s.n.]m, 2006. http://upetd.up.ac.za/thesis/available/etd-07052007-103047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Incompressible and compressible flow"

1

Talwar, Mahesh. Multiphase, compressible, and incompressible flow. Houston: Gulf Pub. Co., Book Division, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kawahara, Mutsuto. Finite Element Methods in Incompressible, Adiabatic, and Compressible Flows. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55450-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pope, Stephen B. PDF methods for combustion in high-speed turbulent flows: Second annual technical report. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Incompressible flow. 3. Aufl. New York: J. Wiley, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Panton, Ronald L. Incompressible flow. 3. Aufl. New York, NY: J. Wiley, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Panton, Ronald L. Incompressible flow. 2. Aufl. New York: Wiley, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Panton, Ronald L. Incompressible flow. 2. Aufl. New York: Wiley, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Panton, Ronald L. Incompressible Flow. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118713075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Saad, Michel A. Compressible fluid flow. 2. Aufl. Englewood Cliffs, N.J: Prentice Hall, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Compressible fluid flow. Englewood Cliffs, N.J: Prentice-Hall, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Incompressible and compressible flow"

1

Wesseling, Pieter. „Unified methods for computing incompressible and compressible flow“. In Principles of Computational Fluid Dynamics, 567–601. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05146-3_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hafez, M. „On the Incompressible Limit of Compressible Fluid Flow“. In Computational Fluid Dynamics for the 21st Century, 255–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44959-1_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Johnson, Claes. „Streamline Diffusion Finite Element Methods for Incompressible and Compressible Fluid Flow“. In The IMA Volumes in Mathematics and Its Applications, 87–106. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3882-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Billaud, M., G. Gallice und B. Nkonga. „Stabilized Finite Element Method for Compressible–Incompressible Diphasic Flows“. In Numerical Mathematics and Advanced Applications 2009, 171–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11795-4_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chacon, T., und O. Pironneau. „Convection of Microstructures by Incompressible and Slightly Compressible Flows“. In The IMA Volumes in Mathematics and Its Applications, 1–22. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8689-6_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Louda, Petr, Jaromír Příhoda und Karel Kozel. „Numerical Simulation of Turbulent Incompressible and Compressible Flows Over RoughWalls“. In Lecture Notes in Computational Science and Engineering, 157–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19665-2_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Churbanov, Alexander. „A Unified Algorithm to Predict Both Compressible and Incompressible Flows“. In Numerical Methods and Applications, 412–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36487-0_46.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Léal De Sousa, L., J. Duplex und A. Caruso. „Extension of an Incompressible Algorithm for Compressible Flow Calculations; Validation on a Transsonic Flow in a Bump.“ In Notes on Numerical Fluid Mechanics (NNFM), 412–19. Wiesbaden: Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-322-89859-3_45.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Friedrich, R., R. Lechner, J. Sesterhenn und T. J. Hüttl. „Direct Numerical Simulation of Turbulent Compressible and Incompressible Wall-Bounded Shear Flows“. In Recent Advances in DNS and LES, 13–26. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4513-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bristeau, M. O., R. Glowinski und J. Periaux. „Acceleration Procedures for The Numerical Simulation of Compressible and Incompressible Viscous Flows“. In Advances in Computational Nonlinear Mechanics, 197–243. Vienna: Springer Vienna, 1989. http://dx.doi.org/10.1007/978-3-7091-2828-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Incompressible and compressible flow"

1

Darbandi, M., S. Hosseinizadeh und G. Schneider. „Solving compressible flow using simple incompressible procedure“. In 35th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Balázsová, M., M. Feistauer, P. Sváček und J. Horáček. „INCOMPRESSIBLE AND COMPRESSIBLE VISCOUS FLOW WITH LOW MACH NUMBERS“. In Topical Problems of Fluid Mechanics 2017. Institute of Thermomechanics, AS CR, v.v.i., 2017. http://dx.doi.org/10.14311/tpfm.2017.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Darbandi, M., G. Schneider, M. Darbandi und G. Schneider. „Use of a flow analogy in solving compressible and incompressible flows“. In 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liang, Y., und M. Damodaran. „Finite volume calculation of incompressible aerodynamic flows using preconditioned compressible flow equations“. In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-526.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lohner, Rainhald, Philippe Ravier, Pierre de Kermel und Jean Roger. „Combination of Compressible and Incompressible Flow Codes Via Immersed Methods“. In 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-528.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

CHEN, YEN-SEN. „Compressible and incompressible flow computations with a pressure based method“. In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gajjar, J., M. Arebi und P. Sibanda. „Nonlinear development of cross-flow instabilities in compressible and incompressible boundary layer flows“. In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ahmed, Anwar, John Wissler und Roy Hartfield. „Experiments on laser beam propagation through incompressible and compressible flow regimes“. In 31st Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Darbandi, M., und G. Schneider. „Extension of a control volume incompressible approach to compressible flow solutions“. In 34th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2506.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rossow, Cord. „Toward Efficient Computation of Compressible and Incompressible Flows“. In 36th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3522.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Incompressible and compressible flow"

1

McHugh, P. R. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization. Office of Scientific and Technical Information (OSTI), Oktober 1995. http://dx.doi.org/10.2172/130602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Colella, Phillip. Oscillations and Concentrations in Compressible and Incompressible Fluids. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada254706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McDonough, J. M., Y. Yang und X. Zhong. Additive Turbulent Decomposition of the Incompressible and Compressible Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada277321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Berger, Marsha. Adaptive Methods for Compressible Flow. Fort Belvoir, VA: Defense Technical Information Center, März 1994. http://dx.doi.org/10.21236/ada277861.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kashiwa, B. Statistical theory of turbulent incompressible multimaterial flow. Office of Scientific and Technical Information (OSTI), Oktober 1987. http://dx.doi.org/10.2172/6009875.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Walker, J. D. Shear Layer Breakdown in Compressible Flow. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada303627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

STRICKLAND, JAMES H. Gridless Compressible Flow: A White Paper. Office of Scientific and Technical Information (OSTI), Februar 2001. http://dx.doi.org/10.2172/780296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Curfman, L. V. A new finite element formulation for incompressible flow. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/26516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vaughn, Jr, und Milton F. Error Estimation for Three Turbulence Models: Incompressible Flow. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada476439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kerschen, Edward J. Receptivity Theory in Compressible Jet Flow Control. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada325563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie