Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Inactivation de l'X“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Inactivation de l'X" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Inactivation de l'X"
Gilgenkrantz, H. „Inactivation de l'X : un gène actif spécifique de l'X inactif ?“ médecine/sciences 7, Nr. 4 (1991): 375. http://dx.doi.org/10.4267/10608/4363.
Der volle Inhalt der QuelleFontés, M. „Empreinte génomique parentale et inactivation de l'X : l'antisens a t-il un sens ?“ médecine/sciences 15, Nr. 11 (1999): 1277. http://dx.doi.org/10.4267/10608/1256.
Der volle Inhalt der QuelleByun, Do-Sun, Naseem Ahmed, Shannon Nasser, Joongho Shin, Sheren Al-Obaidi, Sanjay Goel, Georgia A. Corner et al. „Intestinal epithelial-specific PTEN inactivation results in tumor formation“. American Journal of Physiology-Gastrointestinal and Liver Physiology 301, Nr. 5 (November 2011): G856—G864. http://dx.doi.org/10.1152/ajpgi.00178.2011.
Der volle Inhalt der QuelleStaiculescu, Marius Catalin, Jungsil Kim, Robert P. Mecham und Jessica E. Wagenseil. „Mechanical behavior and matrisome gene expression in the aneurysm-prone thoracic aorta of newborn lysyl oxidase knockout mice“. American Journal of Physiology-Heart and Circulatory Physiology 313, Nr. 2 (01.08.2017): H446—H456. http://dx.doi.org/10.1152/ajpheart.00712.2016.
Der volle Inhalt der QuelleAppelmelk, Ben J., M. Celeste Martino, Eveline Veenhof, Mario A. Monteiro, Janneke J. Maaskant, Riccardo Negrini, Frank Lindh, Malcolm Perry, Giuseppe Del Giudice und Christina M. J. E. Vandenbroucke-Grauls. „Phase Variation in H Type I and Lewis a Epitopes ofHelicobacter pylori Lipopolysaccharide“. Infection and Immunity 68, Nr. 10 (01.10.2000): 5928–32. http://dx.doi.org/10.1128/iai.68.10.5928-5932.2000.
Der volle Inhalt der QuelleGao, Xiquan, Marion Brodhagen, Tom Isakeit, Sigal Horowitz Brown, Cornelia Göbel, Javier Betran, Ivo Feussner, Nancy P. Keller und Michael V. Kolomiets. „Inactivation of the Lipoxygenase ZmLOX3 Increases Susceptibility of Maize to Aspergillus spp.“ Molecular Plant-Microbe Interactions® 22, Nr. 2 (Februar 2009): 222–31. http://dx.doi.org/10.1094/mpmi-22-2-0222.
Der volle Inhalt der QuelleMcGrail, Maura, Fang Liu, Sekhar Kambakam und Zhitao Ming. „Abstract PR-010: Asc1lb progenitor-specific RB conditional inactivation in zebrafish models rare CNS primitive neuroectodermal tumors“. Cancer Research 84, Nr. 5_Supplement_1 (04.03.2024): PR—010—PR—010. http://dx.doi.org/10.1158/1538-7445.brain23-pr-010.
Der volle Inhalt der QuelleEpp, Nikolas, Gerhard Fürstenberger, Karsten Müller, Silvia de Juanes, Michael Leitges, Ingrid Hausser, Florian Thieme, Gerhard Liebisch, Gerd Schmitz und Peter Krieg. „12R-lipoxygenase deficiency disrupts epidermal barrier function“. Journal of Cell Biology 177, Nr. 1 (02.04.2007): 173–82. http://dx.doi.org/10.1083/jcb.200612116.
Der volle Inhalt der QuelleDionellis, Vasilis S., Maxim Norkin, Angeliki Karamichali, Giacomo G. Rossetti, Joerg Huelsken, Paloma Ordonez-Moran und Thanos D. Halazonetis. „Genomic Instability Profiles at the Single Cell Level in Mouse Colorectal Cancers of Defined Genotypes“. Cancers 13, Nr. 6 (12.03.2021): 1267. http://dx.doi.org/10.3390/cancers13061267.
Der volle Inhalt der QuelleLiu, Lei, Huichun Tong und Xiuzhu Dong. „Function of the Pyruvate Oxidase-Lactate Oxidase Cascade in Interspecies Competition between Streptococcus oligofermentans and Streptococcus mutans“. Applied and Environmental Microbiology 78, Nr. 7 (27.01.2012): 2120–27. http://dx.doi.org/10.1128/aem.07539-11.
Der volle Inhalt der QuelleDissertationen zum Thema "Inactivation de l'X"
Raas, Quentin. „Inactivation génique des transporteurs ABC peroxysomaux ABCD1 et ABCD2 dans les cellules microgliales BV-2 : étude de la physiopathogenèse de l’adrénoleucodystrophie liée à l’X“. Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCI011/document.
Der volle Inhalt der QuelleX-linked adrenoleukodystrophy (X-ALD) is a severe neurodegenerative disorder characterized by very-long-chain fatty acid (VLCFA) accumulation resulting from a peroxisomal β-oxidation defect. The disease is caused by mutations in the ABCD1 gene, which encodes for a peroxisomal half ABC transporter predicted, like its closest homologue ABCD2, to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their β-oxidation. Progress in understanding the physiopathogenesis of X-ALD suffers from the lack of appropriate cell and animal models. Since peroxisomal defects in microglia seem to be a key element of the onset of the disease, we generated four microglial cell lines unable to transport and/or β-oxidize VLCFA into the peroxisome. BV-2 microglial cells were engineered with CRISPR-Cas9 to generate four microglial cell lines deficient in ABCD1, ABCD2, both ABCD1 and ABCD2 or ACOX-1 (the first rate-limiting enzyme of the peroxisomal β-oxidation system). Biochemical defects and lipid content changes associated with VLCFA accumulation but also fatty acids and cholesterol changes were identified in deficient microglia. Ultrastructural investigations confirmed cytosolic lipid inclusions and an increased number of peroxisome and mitochondria. Transcriptomic profiles of deficient microglia are indicative of an impaired plasticity and an impaired capacity to operate the metabolic shift required upon an inflammatory stimulation. Peroxisomal defect is likely to affect phagocytosis and antigen presentation capacity of microglia. Peroxisomal lipid metabolism defect is also suggested to modify cell membranes organization. Altogether, these novel mutant cell lines represent a promising model that should permit identification of new therapeutic targets for this complex neurodegenerative disease
Sourrouille, Christophe. „Inactivation de l'α(1. 3)-fucosyltransférase et de la β(1. 2)-xylotransférase, en vue de la production de protéines recombinantes d'intérêt thérapeutique chez la luzerne“. Rouen, 2005. http://www.theses.fr/2005ROUES046.
Der volle Inhalt der QuelleThis work develops the strategy of PTGS with the aim of inhibiting α(1. 3)-fucosyltransferase (FucT) and β(1. 2)-xylotransferase (XylT) activities in Medicago sativa. From this perspective, the cDNAs coding for these two glycoltransferases have been cloned and characterized. To induce the PTGS in M. Sativa, we have transformed plants with sens, antisens and intron-hairpin ARN (ihpARN) constructs targeting either α(1. 3)-FucT or β(1. 2)-XylT. Then, we have selected one transformant presenting a decrease in α(1. 3)-fucosylation of its glycoproteins and two plants presenting a reduction in the β(1. 2)-xylosylation. In addition, in these plants, we have shown a strong diminution in the amount of α(1. 3)-FucT and β(1. 2)-XylT transcripts respectively. Furthermore, we have demonstrated the “inhibiting” constructs realized from the M. Sativa β(1. 2)-XylT cDNA are able to induce the PTGS in a heterologous system: tobacco BY-2 cells