Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „In-yeast genome cloning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "In-yeast genome cloning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "In-yeast genome cloning"
Erickson, J. R., und M. Johnston. „Direct cloning of yeast genes from an ordered set of lambda clones in Saccharomyces cerevisiae by recombination in vivo.“ Genetics 134, Nr. 1 (01.05.1993): 151–57. http://dx.doi.org/10.1093/genetics/134.1.151.
Der volle Inhalt der QuelleZhang, Jiantao, Zsigmond Benko, Chenyu Zhang und Richard Y. Zhao. „Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast (Schizosaccharomyces pombe)“. Pathogens 13, Nr. 7 (04.07.2024): 566. http://dx.doi.org/10.3390/pathogens13070566.
Der volle Inhalt der QuelleSclafani, Robert A., und Walton L. Fangman. „THYMIDINE UTILIZATION BY tut MUTANTS AND FACILE CLONING OF MUTANT ALLELES BY PLASMID CONVERSION IN S. CEREVISIAE“. Genetics 114, Nr. 3 (01.11.1986): 753–67. http://dx.doi.org/10.1093/genetics/114.3.753.
Der volle Inhalt der QuelleHiltunen, J. K., F. Okubo, V. A. S. Kursu, K. J. Autio und A. J. Kastaniotis. „Mitochondrial fatty acid synthesis and maintenance of respiratory competent mitochondria in yeast“. Biochemical Society Transactions 33, Nr. 5 (26.10.2005): 1162–65. http://dx.doi.org/10.1042/bst0331162.
Der volle Inhalt der QuelleZhang, Xiao-Ran, Jia-Bei He, Yi-Zheng Wang und Li-Lin Du. „A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast“. G3: Genes|Genomes|Genetics 8, Nr. 6 (27.04.2018): 2067–77. http://dx.doi.org/10.1534/g3.118.200164.
Der volle Inhalt der QuelleLeppert, G., R. McDevitt, S. C. Falco, T. K. Van Dyk, M. B. Ficke und J. Golin. „Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces.“ Genetics 125, Nr. 1 (01.05.1990): 13–20. http://dx.doi.org/10.1093/genetics/125.1.13.
Der volle Inhalt der QuelleMülleder, Michael, Kate Campbell, Olga Matsarskaia, Florian Eckerstorfer und Markus Ralser. „Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities“. F1000Research 5 (20.09.2016): 2351. http://dx.doi.org/10.12688/f1000research.9606.1.
Der volle Inhalt der QuelleKuspa, A., D. Vollrath, Y. Cheng und D. Kaiser. „Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes.“ Proceedings of the National Academy of Sciences 86, Nr. 22 (01.11.1989): 8917–21. http://dx.doi.org/10.1073/pnas.86.22.8917.
Der volle Inhalt der QuelleHanekamp, Theodor, Mary K. Thorsness, Indrani Rebbapragada, Elizabeth M. Fisher, Corrine Seebart, Monica R. Darland, Jennifer A. Coxbill, Dustin L. Updike und Peter E. Thorsness. „Maintenance of Mitochondrial Morphology Is Linked to Maintenance of the Mitochondrial Genome in Saccharomyces cerevisiae“. Genetics 162, Nr. 3 (01.11.2002): 1147–56. http://dx.doi.org/10.1093/genetics/162.3.1147.
Der volle Inhalt der QuelleAndleeb, S., F. Latif, S. Afzal, Z. Mukhtar, S. Mansoor und I. Rajoka. „CLONING AND EXPRESSION OF CHAETOMIUM THERMOPHILUM XYLANASE 11-A GENE IN PICHIA PASTORIS“. Nucleus 45, Nr. 1-2 (01.07.2020): 75–81. https://doi.org/10.71330/nucleus.45.01-2.1001.
Der volle Inhalt der QuelleDissertationen zum Thema "In-yeast genome cloning"
Barret, Julien. „Clonage, ingénierie et transfert de grands fragments de génome chez Bacillus subtilis“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0458.
Der volle Inhalt der QuelleGenome engineering of microorganisms has become a standard in microbial biotechnology. In 2010, promising synthetic biology technologies using yeast as a platform for the assembly and engineering of synthetic bacterial genomes followed by their transplantation into a recipient cell have emerged. These technologies have led to the creation of the first synthetic cells and opened new avenues towards the construction of cells with fully controlled biological properties. Transferring these tools to microorganisms of industrial interest such as the Gram+ bacterium Bacillus subtilis (Bsu), a model in the biotechnology sector, would be a major step forward. This is precisely the aim of the ANR "Bacillus 2.0" project, which brings together two INRAE teams and aims to adapt all these synthetic biology tools to Bsu so as to be able to go from computer-aided design of semi-synthetic Bsu genomes to the production of new industrial strains. However, initial work on this project showed that the entire Bsu genome could not be cloned and maintained in yeast in its current state. These results threatened to call into question the feasibility of the entire project and, in particular, the relevance of using yeast as a platform for assembling the semi-synthetic Bsu genome.The goal of my thesis was to demonstrate that yeast remained a relevant host for the Bacillus 2.0 project. It was divided into 3 parts. In the first part, a genome cloning method recently developed in the laboratory, called CReasPy-Fusion, was progressively adapted to Bsu. The results obtained showed (i) the possible transfer of plasmid DNA between bacterial protoplasts and yeast spheroplasts, (ii) the efficiency of a CRISPR-Cas9 system carried by yeast cells to capture/modify this plasmid DNA during Bsu/yeast fusion, and then (iii) the efficiency of the same system to capture genomic fragments of about a hundred kb from three different strains. Fluorescence microscopy observations were also carried out revealing two types of interaction that would enable the transition from protoplast/spheroplast contact to cloned bacterial DNA in yeast. In the second part of my thesis, the CReasPy-Fusion method was used in an attempt to clone large Bsu genome fragments in yeast. Genomic fragments of up to ~1 Mb could be cloned in yeast, but their capture required the prior addition of a large number of ARS to the Bsu genome to stabilize the genetic constructs. The final part was the adaptation of the RAGE method to Bsu. This method allow the transfer, not of a whole genome, but of portions of bacterial genomes from yeast to the bacteria to be edited. Proof of concept was achieved by exchanging a 155 kb genome fragment with a reduced 44 kb version.In conclusion, the work carried out during this thesis has shown the relevance of using yeast as an engineering platform for large-scale modifications of the Bsu genome. On the one hand, we have shown that fragments of around 100 kb can be cloned in yeast, modified and transferred into a recipient cell to generate Bsu mutants. This strategy offers a real alternative to genome transplantation. On the other hand, we have shown that large fragments of the Bsu genome (up to 1 Mb) can also be cloned in yeast, provided they contain numerous ARS in their sequences. Thanks to these results, cloning a reduced Bsu genome in yeast has once again become an achievable goal
Buchteile zum Thema "In-yeast genome cloning"
Li, Ge, und Richard Y. Zhao. „Molecular Cloning and Characterization of Small Viral Genome in Fission Yeast“. In Methods in Molecular Biology, 47–61. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7546-4_5.
Der volle Inhalt der QuelleBenders, Gwynedd A. „Cloning Whole Bacterial Genomes in Yeast“. In Methods in Molecular Biology, 165–80. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-564-0_13.
Der volle Inhalt der QuelleGolemis, Erica A., Ilya Serebriiskii und Susan F. Law. „Adjustment of Parameters in the Yeast Two-Hybrid System“. In Gene Cloning and Analysis, 11–28. London: Garland Science, 2023. http://dx.doi.org/10.1201/9781003421474-1.
Der volle Inhalt der QuelleBaykov, Ivan, Olga Kurchenko, Ekaterina Mikhaylova, Vera V. Morozova und Nina V. Tikunova. „Robust and Reproducible Protocol for Phage Genome “Rebooting” Using Transformation-Associated Recombination (TAR) Cloning into Yeast Centromeric Plasmid“. In Methods in Molecular Biology, 301–17. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3523-0_19.
Der volle Inhalt der QuelleOugen, P., und D. Cohen. „Yeast artificial chromosomes cloning using PFGE“. In Pulsed Field Gel Electrophoresis, 95–118. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199635368.003.0005.
Der volle Inhalt der QuelleAnand, Rak Esh. „Cloning into yeast artificial chromosomes“. In DNA Cloning 3, 103–28. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199634835.003.0004.
Der volle Inhalt der QuelleDear, Paul H. „Happy mapping“. In Genome Mapping, 95–124. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780199636310.003.0005.
Der volle Inhalt der QuelleIvens, Alasdair c., und Peter F. R. Little. „Cosmid clones and their application to genome studies“. In DNA Cloning 3, 1–48. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199634835.003.0001.
Der volle Inhalt der QuelleSikorski, Roberts, Jill B. Keeney, und Jef D. Boeke. „Plasmid shuffling and mutant isolation“. In Molecular Genetics of Yeast, 97–110. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199634309.003.0006.
Der volle Inhalt der QuelleNewman, Andrew. „Analysis of pre-mRNA splicing in yeast“. In RNA Processing, 179–95. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780199633449.003.0006.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "In-yeast genome cloning"
Droby, Samir, Michael Wisniewski, Martin Goldway, Wojciech Janisiewicz und Charles Wilson. Enhancement of Postharvest Biocontrol Activity of the Yeast Candida oleophila by Overexpression of Lytic Enzymes. United States Department of Agriculture, November 2003. http://dx.doi.org/10.32747/2003.7586481.bard.
Der volle Inhalt der QuelleWagner, D. Ry, Eliezer Lifschitz und Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, Mai 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Der volle Inhalt der Quelle