Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Imputation - incertitude“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Imputation - incertitude" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Imputation - incertitude"
Bernard, Francis. „Méthodes d'analyse des données incomplètes incorporant l'incertitude attribuable aux valeurs manquantes“. Mémoire, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6571.
Der volle Inhalt der QuelleElimam, Rayane. „Apprentissage automatique pour la prédiction de performances : du sport à la santé“. Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Der volle Inhalt der QuelleNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Bücher zum Thema "Imputation - incertitude"
Analysis of Integrated Data. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenChambers, Raymond L., und Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenChambers, Raymond L., und Lichun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenChambers, Raymond L., und Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle finden