Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Impurity models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Impurity models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Impurity models"
Weston, Robert. „Impurity operators in RSOS models“. Journal of Physics A: Mathematical and General 33, Nr. 48 (24.11.2000): 8981–9001. http://dx.doi.org/10.1088/0305-4470/33/48/326.
Der volle Inhalt der QuelleHewson, A. C., A. Oguri und D. Meyer. „Renormalized parameters for impurity models“. European Physical Journal B 40, Nr. 2 (August 2004): 177–89. http://dx.doi.org/10.1140/epjb/e2004-00256-0.
Der volle Inhalt der QuelleQiu, Huanhuan, Jianing Zhuang, Li Huang, Jianzhou Zhao und Liang Du. „Improved Hubbard-I approximation impurity solver for quantum impurity models“. Journal of Physics: Condensed Matter 31, Nr. 2 (07.12.2018): 025601. http://dx.doi.org/10.1088/1361-648x/aaee95.
Der volle Inhalt der QuelleHafermann, H., C. Jung, S. Brener, M. I. Katsnelson, A. N. Rubtsov und A. I. Lichtenstein. „Superperturbation solver for quantum impurity models“. EPL (Europhysics Letters) 85, Nr. 2 (Januar 2009): 27007. http://dx.doi.org/10.1209/0295-5075/85/27007.
Der volle Inhalt der QuelleBracken, Anthony J., Xiang-Yu Ge, Mark D. Gould und Huan-Qiang Zhou. „Integrable extended Hubbard models with boundary Kondo impurities“. Bulletin of the Australian Mathematical Society 64, Nr. 3 (Dezember 2001): 445–67. http://dx.doi.org/10.1017/s0004972700019912.
Der volle Inhalt der QuelleJin-Jun, Liang, Clive Emary und Tobias Brandes. „Quantum Impurity Models with Coupled Cluster Method“. Communications in Theoretical Physics 54, Nr. 3 (September 2010): 509–17. http://dx.doi.org/10.1088/0253-6102/54/3/26.
Der volle Inhalt der QuelleMorozov, D. Kh. „Reduced Models of Impurity Seeded Edge Plasmas“. Contributions to Plasma Physics 48, Nr. 1-3 (März 2008): 234–42. http://dx.doi.org/10.1002/ctpp.200810041.
Der volle Inhalt der QuelleSalleh, Faiz, und Hiroya Ikeda. „Influence of Impurity Band on Seebeck Coefficient in Heavily-Doped Si“. Advanced Materials Research 222 (April 2011): 197–200. http://dx.doi.org/10.4028/www.scientific.net/amr.222.197.
Der volle Inhalt der QuellePetrenko, T. L., V. V. Teslenko und E. N. Mokhov. „Models of Impurity Boron in Various SiC Polytypes“. Defect and Diffusion Forum 103-105 (Januar 1993): 667–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.103-105.667.
Der volle Inhalt der QuelleMochizuki, Kazuhiro, Fumimasa Horikiri, Hiroshi Ohta und Tomoyoshi Mishima. „Models for Impurity Incorporation during Vapor-Phase Epitaxy“. Materials Science Forum 1062 (31.05.2022): 3–7. http://dx.doi.org/10.4028/p-9bg88x.
Der volle Inhalt der QuelleDissertationen zum Thema "Impurity models"
Glossop, Matthew T. „Theoretical studies of Anderson impurity models“. Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365734.
Der volle Inhalt der QuelleDickens, Nigel L. „Quantum impurity models : a local moment approach“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270010.
Der volle Inhalt der QuelleSimpson, James. „Theoretical studies of Jahn-Teller impurity ion complexes in III-V semiconductors“. Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329837.
Der volle Inhalt der QuelleHolzner, Andreas Michael. „DMRG studies of Chebyshev-expanded spectral functions and quantum impurity models“. Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-139333.
Der volle Inhalt der QuelleSandven, Håkon. „Evaluation of Distribution Function Models for ICRH-induced Impurity Transport in Tokamaks“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192460.
Der volle Inhalt der QuelleFusionsenergi är utnyttjandet av energi som frigörs i kärnfusionsreaktioner, och har potential för att bli en energikälla som är mer hållbar, säkrare och renare än de primära energikällorna idag. Det grundläggande problemet för fusionskraft är energiinneslutning. Förorenande joner är en viktig källa för förlust av energiinneslutning i fusionsanläggningar med magnetisk inneslutning. Därför är föroreningstransport i fusionsplasma ett viktigt ämnesområde. Joncyklotronresonansupphettning (ICRH) har visats både experimentellt och teoretiskt att påverka föroreningstransport i tokamaker. En poloidal asymmetri i minoritetsjonerna ger en elektrisk potential, som orsakar förorening samlas på den inre sidan av fusionsanläggningen. Poloidal asymmetri i föroreningsdensiteten på ett fluxyta inducerar en netto radialflux över fluxytan. Detta projekt har jämfört ICRH-inducerad föroreningstransport för fyra approximativa distributionsfunktionsmodeller för minoritetsjon med numeriska resultat från SELFO koden. Detta har gjorts med beräkningar för JET-liknande, kon-centrisk tokamak-geometri med deuterium-plasma, väte som minoritetsjoner, och volfram som föroreningsjoner. Två modeller, s.k. bi-Maxwellian- och LFS bi-Maxwellianmodellen, används i existerande litteratur. Ytterligare två modeller introduceras, kallad tri-Maxwellian- och LFS tri-Maxwellianmodellen. Dessa modeller tar hänsyn till förekomsten av termiska och snabba joner i minoritetsbefolkningen. Resultaten visar att det finns tydliga skillnader mellan de olika modellerna, särskilt när resonansytan är på den inre sidan. Tri-Maxwellianmodellerna visar en klar förbättring över bi-Maxwellianmodellerna jämfört med SELFO. Det finns dock vissa särdrag i resultaten från SELFO som ingen av de approximative modellerna förutsäger, eftersom modellerna försummar breda banor. En möjlig barriär i den radiella transporten har också blivit identifierat på fluxytor där asymmetrin i föroreningsdensiteten liknar asymmetrin i den magnetiska fältstyrkan. LFS bi-Maxwellianmodellen förutsäger den radiella positionen av barriären mest noggrant och tillförlitligt jämfört med SELFO.
Sindel, Michael. „Numerical Renormalization Group studies of Quantum Impurity Models in the Strong Coupling Limit“. Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-31150.
Der volle Inhalt der QuelleMünder, Wolfgang. „Matrix product state clculations for one-dimensional quantum chains and quantum impurity models“. Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135224.
Der volle Inhalt der QuelleHanl, Markus Johannes. „Optical and transport properties of quantum impurity models - an NRG study of generic models and real physical systems“. Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-174608.
Der volle Inhalt der QuelleDe, Leo Lorenzo. „Non-Fermi liquid behavior in multi-orbital Anderson impurity models and possible relevance for strongly correlated lattice models“. Doctoral thesis, SISSA, 2004. http://hdl.handle.net/20.500.11767/4016.
Der volle Inhalt der QuelleBidzhiev, Kemal. „Out-of-equilibrium dynamics in a quantum impurity model“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS352/document.
Der volle Inhalt der QuelleThe fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained
Bücher zum Thema "Impurity models"
Ottieri, Alessandra. L' esperienza dell'impuro: Filosofia, fisiologia, chimica, arte e altre "impurità" nella scrittura di Valéry, Ungaretti, Sinisgalli, Levi. Roma: Aracne, 2006.
Den vollen Inhalt der Quelle findenL' esperienza dell'impuro: Filosofia, fisiologia, chimica, arte e altre "impurità" nella scrittura di Valéry, Ungaretti, Sinisgalli, Levi. Roma: Aracne, 2006.
Den vollen Inhalt der Quelle findenSchwanke, Peter. Implementation into DIVIMP of a drift-kinetic model derived from the Fokker-Planck equation to examine the parallel-to-B velocity component of impurity ions in divertor-tokamak plasmas. Toronto: Department of Aerospace Science and Engineering, University of Toronto, 2001.
Den vollen Inhalt der Quelle findenComtet1, Alain, und Yves Tourigny2. Impurity models and products of random matrices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0011.
Der volle Inhalt der QuelleEngh, Thorvald Abel, Geoffrey K. Sigworth und Anne Kvithyld. Principles of Metal Refining and Recycling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198811923.001.0001.
Der volle Inhalt der QuelleNardelli, Matilde. Antonioni and the Aesthetics of Impurity. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474444040.001.0001.
Der volle Inhalt der QuelleMoran, Richard. Williams, History, and the “Impurity of Philosophy”. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190633776.003.0011.
Der volle Inhalt der QuelleMartin, Peter. China's Civilian Army. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197513705.001.0001.
Der volle Inhalt der QuelleUrban, Hugh B. Purity. Herausgegeben von Michael Stausberg und Steven Engler. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198729570.013.43.
Der volle Inhalt der QuelleFoltz, Jonathan. Fables of Detachment. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190676490.003.0002.
Der volle Inhalt der QuelleBuchteile zum Thema "Impurity models"
Okiji, A., S. Suga, M. Yamashita und N. Kawakami. „Elementary Excitations for Impurity Models“. In Correlation Effects in Low-Dimensional Electron Systems, 96–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85129-2_9.
Der volle Inhalt der QuellePost, D. E., und K. Lackner. „Plasma Models for Impurity Control Experiments“. In Physics of Plasma-Wall Interactions in Controlled Fusion, 627–93. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0067-1_16.
Der volle Inhalt der QuelleLesage, F., H. Saleur und P. Simonetti. „New Exact Results for Quantum Impurity Problems“. In Calogero—Moser— Sutherland Models, 299–312. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1206-5_19.
Der volle Inhalt der QuelleLee, In-Ho, Kang-Hun Ahn, Yong-Hoon Kim, Richard M. Martin und Jean-Pierre Leburton. „Capacitive Energy of Quantum Dots with Hydrogenic Impurity“. In Physical Models for Quantum Dots, 145–62. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-8.
Der volle Inhalt der QuelleWeng, Yilin, und J. P. Leburton. „Impurity Scattering with Semiclassical Screening in Multiband Quasi-One-Dimensional Systems“. In Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 59–76. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-6.
Der volle Inhalt der QuelleFortunelli, A., A. Desalvo, O. Salvetti und E. Albertazzi. „Cluster Simulations of Amorfous Silicon, with and without an Impurity Boron Atom“. In Cluster Models for Surface and Bulk Phenomena, 595–603. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-6021-6_47.
Der volle Inhalt der QuelleKroha, Johann, und Peter Wölfle. „Diagrammatic Theory of Anderson Impurity Models: Fermi and Non-Fermi Liquid Behavior“. In Open Problems in Strongly Correlated Electron Systems, 101–10. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0771-9_11.
Der volle Inhalt der QuelleBelenkii, A. Ya. „A Cluster Model of the Electronic Structure of Grain Boundaries with the Impurity Segregation and Particles Precipitation“. In Cluster Models for Surface and Bulk Phenomena, 577–85. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-6021-6_45.
Der volle Inhalt der QuelleTakeno, Shozo, und Hideaki Matsueda. „Atomic Operator Formalism of Elementary Gates for Quantum Computation and Impurity-Induced Exciton Quantum Gates“. In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 195–204. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_17.
Der volle Inhalt der QuelleDebertolis, Maxime. „Random Matrix Impurity Model“. In Springer Theses, 95–127. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47233-6_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Impurity models"
Žitko, Rok, und Janez Bonča. „Non-Fermi-liquid properties of three-impurity Anderson models“. In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XI: Eleventh Training Course in the Physics of Strongly Correlated Systems. AIP, 2007. http://dx.doi.org/10.1063/1.2752007.
Der volle Inhalt der QuelleNishio, Osamu, Masahiro Takenaka, Eiji Aoki, Norio Mizukoshi und Katsumasa Fujii. „Calibration of TCAD Models for High Dose Impurity Diffusion“. In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.a-5-2.
Der volle Inhalt der QuelleRingel, M., V. Janiš, Adolfo Avella und Ferdinando Mancini. „Strong electron correlation in impurity models: singlet and triplet multiple scatterings“. In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIII: Thirteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2009. http://dx.doi.org/10.1063/1.3225484.
Der volle Inhalt der QuelleDas, Saptarshi, Shamik Sural, Jaideep Vaidya und Vijayalakshmi Atluri. „Using Gini Impurity to Mine Attribute-based Access Control Policies with Environment Attributes“. In SACMAT '18: The 23rd ACM Symposium on Access Control Models and Technologies. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205977.3208949.
Der volle Inhalt der QuelleJaniš, Václav, und Antonín Klíč. „Kondo Temperature and High to Low Temperature Crossover in Impurity Models of Correlated Electrons“. In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011124.
Der volle Inhalt der QuelleKawaguchi, Munemichi. „Phase-Field Model for Recrystallization of Impurities in Sodium Coolant“. In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65721.
Der volle Inhalt der QuelleSlepchuk, Kira, Kira Slepchuk, Tatyana Khmara und Tatyana Khmara. „AVAILABILITY OF NUMERICAL MATHEMATICAL MODELS TO SOLVE THE APPLIED PROBLEMS OF WATER QUALITY MANAGEMENT OF SHELF ECOSYSTEMS“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93b74031e6.93146133.
Der volle Inhalt der QuelleSlepchuk, Kira, Kira Slepchuk, Tatyana Khmara und Tatyana Khmara. „AVAILABILITY OF NUMERICAL MATHEMATICAL MODELS TO SOLVE THE APPLIED PROBLEMS OF WATER QUALITY MANAGEMENT OF SHELF ECOSYSTEMS“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43172900b2.
Der volle Inhalt der QuelleAzeem, M. Mustafa, Di Yun und Muhammad Zubair. „Atomic Insights on Interaction Mechanism of Dislocation With Void/Impurity/Precipitates in BCC Iron“. In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65197.
Der volle Inhalt der QuelleTamura, Akinori, Shiro Takahashi, Hiroyuki Nakata und Akio Takota. „Development of Evaluation Method for Cold Trap in Fast Breeder Reactor: Part 1 — Numerical Analysis of Impurity Precipitation on Mesh Wire“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67702.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Impurity models"
Cox, L. E., J. M. Peek und J. W. Allen. Pu 4f XPS spectra analyzed in the Anderson impurity model. Office of Scientific and Technical Information (OSTI), Mai 1998. http://dx.doi.org/10.2172/296778.
Der volle Inhalt der QuelleVeerasingam, Ramanapathy. A one-dimensional plasma and impurity transport model for reversed field pinches. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10103441.
Der volle Inhalt der QuelleWest, W. P., T. E. Evans und N. H. Brooks. Modeling of impurity spectroscopy in the divertor and SOL of DIII-D using the 1D multifluid model NEWT1D. Office of Scientific and Technical Information (OSTI), Oktober 1996. http://dx.doi.org/10.2172/453536.
Der volle Inhalt der QuellePatchett, B. M., und A. C. Bicknell. L51706 Higher-Strength SMAW Filler Metals. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 1993. http://dx.doi.org/10.55274/r0010418.
Der volle Inhalt der Quelle