Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Impedance convertor“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Impedance convertor" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Impedance convertor"
Fabre, A., und O. Saaid. „Novel translinear impedance convertor and bandpass filter applications“. Electronics Letters 29, Nr. 9 (1993): 746. http://dx.doi.org/10.1049/el:19930500.
Der volle Inhalt der QuelleMiguel, J. M. „New positive-impedance convertor suitable for high-frequency application“. Electronics Letters 21, Nr. 9 (1985): 402. http://dx.doi.org/10.1049/el:19850286.
Der volle Inhalt der QuelleLiang, Zhiming, Bin Li, Zhaohui Wu und Yunfeng Hu. „A high input impedance chopper amplifier using negative impedance convertor for implantable EEG recording“. IEICE Electronics Express 17, Nr. 17 (10.09.2020): 20200238. http://dx.doi.org/10.1587/elex.17.20200238.
Der volle Inhalt der QuelleTakagi, S., und N. Fujii. „Novel highly linear MOS integrator using a negative impedance convertor (NIC)“. Electronics Letters 30, Nr. 10 (12.05.1994): 746–48. http://dx.doi.org/10.1049/el:19940547.
Der volle Inhalt der QuelleWatanabe, Tomoki, Noriko Fukuda und Satoru Hatsukade. „Control of a PWM Convertor for Linear Generator as a Variable Impedance“. IEEJ Transactions on Industry Applications 120, Nr. 2 (2000): 288–96. http://dx.doi.org/10.1541/ieejias.120.288.
Der volle Inhalt der QuelleLi, Wenxing, Ning Zhai, Ruilong Chen und Wenhua Yu. „Non-Foster Impedance Wideband Matching Technique for Electrically Small Active Antenna“. International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/531419.
Der volle Inhalt der QuelleZhang, Song, Guoqing Li, Shuguang Li und Xintong Liu. „A Method of Demarcating Critical Failure Impedance Boundary of Multi-Infeed HVDC Systems Based on Minimum Extinction Angle“. Mathematical Problems in Engineering 2021 (31.08.2021): 1–14. http://dx.doi.org/10.1155/2021/9923737.
Der volle Inhalt der QuelleLahiri, A. „DO-CCII Based Generalised Impedance Convertor Simulates Floating Inductance, Capacitance Multiplier and Fdnr“. Australian Journal of Electrical and Electronics Engineering 7, Nr. 1 (Januar 2010): 15–20. http://dx.doi.org/10.1080/1448837x.2010.11464253.
Der volle Inhalt der QuelleDing, Yuan, und Vincent Fusco. „Loading artificial magnetic conductor and artificial magnetic conductor absorber with negative impedance convertor elements“. Microwave and Optical Technology Letters 54, Nr. 9 (18.06.2012): 2111–14. http://dx.doi.org/10.1002/mop.27019.
Der volle Inhalt der QuelleHu, Pengfei, Li Shen, Feng Han, Fei Yang, Maojiang Song, Li Zhang und Liping Liu. „Development of the data acquisition system for terahertz spectrometer“. Transactions of the Institute of Measurement and Control 40, Nr. 3 (06.04.2017): 805–11. http://dx.doi.org/10.1177/0142331217690475.
Der volle Inhalt der QuelleDissertationen zum Thema "Impedance convertor"
Wang, Jinhua. „A Wide Input Power Line Energy Harvesting Circuit For Wireless Sensor Nodes“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103426.
Der volle Inhalt der QuelleM.S.
Nowadays, with the magnificent growth of IoT devices, a reliable, and efficient energy supply system becomes more and more important, because, for some applications, battery replacement is very expensive and sometimes even impossible. At this time, a well-designed self-contained energy harvesting system is a good solution. The energy harvesting system can extend the service life of the IoT devices and reduce the frequency of charging or checking the device. In this work, the proposed circuit aims to harvest energy from the AC power lines, and the harvested power intends to power wireless sensor nodes (WSNs). By utilizing the efficient and self-contained EH system, WSNs can be used to monitor the temperature, pressure, noise level and humidity etc. The proposed energy harvesting circuit was implemented with discrete components on a printed circuit board (PCB). Under a power line current of 50 A @ 50 Hz, the proposed energy harvesting circuit can harvest 156.6 mW, with a peak efficiency of 80.99 %.
Haskou, Abdullah. „Contribution à l'étude des antennes miniatures directives ou large-bande avec des circuits non-Foster“. Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S043/document.
Der volle Inhalt der QuelleFor supporting different wireless technologies, mobile terminals require significant miniaturization of antennas. However, antennas performance has some fundamental limits related to their physical dimensions. The available theory shows that superdirective arrays can exceed Harrington’s limit on antenna directivity and non-Foter matched antennas can surpass Bode-Fano limit on antenna bandwidth. Therefore, this work focuses on the design of superdirective antenna arrays and non-Foster matched antennas as possible solutions for improving the performance of Electrically Small Antennas (ESAs). In the first part: a Negative Impedance Converter (NIC) is designed to have a very small negative capacitor. The circuit is evaluated in terms of gain, stability and linearity. Then, the circuit is used to match several small antennas in the UHF band. In the second part: the theoretical limits of superdirective antenna arrays are studied. A simple and practical approach to design parasitic antenna arrays is proposed. The integration of superdirective ESAs in Printed Circuit Boards (PCBs) is studied and the difficulties of measuring this type of antennasare evaluated. A new strategy for the design of 3D or planar compact arrays, with linear or circular-polarization, using superdirective elements is presented
Tade, Oluwabunmi O. „Negative impedance converter for antenna matching“. Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/4920/.
Der volle Inhalt der QuelleCazzell, Gregory A. „Output Impedance in PWM Buck Converter“. Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1247006982.
Der volle Inhalt der QuelleCheong, Heng Wan. „Generalized impedance converter (GIC) filter utilizing composite amplifier“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Sep%5FCheong.pdf.
Der volle Inhalt der QuelleZhang, Guidong [Verfasser]. „Impedance networks matching mechanism and design of impedance networks converters / Guidong Zhang“. Hagen : Fernuniversität Hagen, 2015. http://d-nb.info/1079393064/34.
Der volle Inhalt der QuelleZhang, Xin. „Impedance control and stability of DC/DC converter systems“. Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/13951/.
Der volle Inhalt der QuelleQuinalia, Mateus Siqueira. „Modelagem, análise de estabilidade e controle da tensão da malha Z em inversores fonte de impedância“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-04022019-091341/.
Der volle Inhalt der QuelleThe growing use of alternative energy sources require power converters able to boost their terminal voltage and connect them to the distribution system. In this context, the classical step-up converter (DC/DC power converter) and the voltage source inverter (VSI) are the most applied solutions to process the power flow from the source to the grid. However, they present a low efficient because of the double stage of conversion, i.e. the power flows through the DC/DC and DC/AC power converters as well. To avoid this type of drawback, in the beginning of the last decade the impedance source inverter (ZSI) was introduce. In this new solution, the DC/DC power converter responsible for boosting the voltage at the DC-source terminals was removed and a Z (LCLC-network) was added with two tasks, i.e. boost the DC-source terminal voltage and improve the ZSI efficiency. Unfortunately, the papers in the literature did not present a generalized mathematical model to support designers of power converters in the analysis of stability, design of controllers or evaluate the voltage gain of the converter. In this sense, this thesis proposes the development of a complete mathematical model and the stability analysis of the plant. To support all the theoretical development a set of analysis in the time and frequency-domain was performed. Finally, the control of DC-link voltage was verified to support all the statements presented in this thesis (control on the Z-network voltage capacitance).
El, Hamoui Mohamad A. „A Pipeline Analog-To-Digital Converter for a Plasma Impedance Probe“. DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/287.
Der volle Inhalt der QuelleHynek, David. „Přenosný číslicově řízený stabilizovaný zdroj symetrického napětí“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413121.
Der volle Inhalt der QuelleBücher zum Thema "Impedance convertor"
Zhang, Guidong, Bo Zhang und Zhong Li. Designing Impedance Networks Converters. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63655-9.
Der volle Inhalt der QuelleKorotkov, A. S. Mikroėlektronnye analogovye filʹtry na preobrazovateli︠a︡kh impedansa. Sankt-Peterburg: Nauka, Peterburgskoe otd-nie, 1999.
Den vollen Inhalt der Quelle findenDesigning Impedance Networks Converters. Springer, 2017.
Den vollen Inhalt der Quelle findenDesigning Impedance Networks Converters. Springer, 2018.
Den vollen Inhalt der Quelle findenBlaabjerg, Frede, Haitham Abu-Rub, Baoming Ge, Omar Ellabban und Poh Chiang Loh. Impedance Source Power Electronic Converters. Wiley & Sons, Incorporated, John, 2016.
Den vollen Inhalt der Quelle findenBlaabjerg, Frede, Yushan Liu, Haitham Abu-Rub, Baoming Ge, Omar Ellabban und Poh Chiang Loh. Impedance Source Power Electronic Converters. Wiley-Interscience, 2016.
Den vollen Inhalt der Quelle findenBlaabjerg, Frede, Haitham Abu-Rub, Baoming Ge, Omar Ellabban und Poh Chiang Loh. Impedance Source Power Electronic Converters. Wiley & Sons, Incorporated, John, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Impedance convertor"
Arrillaga, Jos, Bruce C. Smith, Neville R. Watson und Alan R. Wood. „Converter Harmonic Impedances“. In Power System Harmonic Analysis, 283–309. West Sussex, England: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118878316.ch10.
Der volle Inhalt der QuelleLoh, Poh Chiang. „Z-Source DC-DC Converters“. In Impedance Source Power Electronic Converters, 138–47. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch9.
Der volle Inhalt der QuelleLiu, Yushan, Haitham Abu-Rub, Baoming Ge, Frede Blaabjerg, Poh Chiang Loh und Omar Ellabban. „Background and Current Status“. In Impedance Source Power Electronic Converters, 1–19. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch1.
Der volle Inhalt der QuelleLoh, Poh Chiang, Yushan Liu, Haitham Abu-Rub und Baoming Ge. „Z-Source Multilevel Inverters“. In Impedance Source Power Electronic Converters, 194–225. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch12.
Der volle Inhalt der QuelleBayhan, Sertac, und Haitham Abu-Rub. „Impedance Source Multi-Leg Inverters“. In Impedance Source Power Electronic Converters, 295–328. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch17.
Der volle Inhalt der QuelleBayhan, Sertac, Mostafa Mosa und Haitham Abu-Rub. „Model Predictive Control of Impedance Source Inverter“. In Impedance Source Power Electronic Converters, 329–61. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch18.
Der volle Inhalt der QuelleTrabelsi, Mohamed, und Haitham Abu-Rub. „Grid Integration of Quasi-Z Source Based PV Multilevel Inverter“. In Impedance Source Power Electronic Converters, 362–89. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch19.
Der volle Inhalt der QuelleLoh, Poh Chiang, Yushan Liu und Haitham Abu-Rub. „Typical Transformer-Based Z-Source/Quasi-Z-Source Inverters“. In Impedance Source Power Electronic Converters, 113–27. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch7.
Der volle Inhalt der QuelleTietze, Ulrich, Christoph Schenk und Eberhard Gamm. „Controlled Sources and Impedance Converters“. In Electronic Circuits, 767–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78655-9_12.
Der volle Inhalt der QuelleZhang, Guidong, Bo Zhang und Zhong Li. „Design Methodology of Impedance Networks Converters“. In Studies in Systems, Decision and Control, 45–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63655-9_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Impedance convertor"
Ranga, Y., L. Matekovits, S. G. Hay und T. S. Bird. „An anisotropic impedance surface for dual-band linear-to-circular transmission polarization convertor“. In 2013 International Workshop on Antenna Technology (iWAT). IEEE, 2013. http://dx.doi.org/10.1109/iwat.2013.6518296.
Der volle Inhalt der QuelleLaury, John, Lars Abrahamsson und Math Bollen. „Transient Stability of Rotary Frequency Converter Fed Low Frequency Railway Grids: The Impact of Different Grid Impedances and Different Converter Station Configurations“. In 2018 Joint Rail Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/jrc2018-6247.
Der volle Inhalt der QuelleNgo, Khai D. T., Alex Phipps, Toshikazu Nishida, Jenshan Lin und Shengwen Xu. „Power Converters for Piezoelectric Energy Extraction“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14343.
Der volle Inhalt der QuelleRezaei Niya, Seyed Mohammad, und Mina Hoorfar. „Temperature Sensitivity Analysis of Electrochemical Impedance Spectroscopy Results in PEM Fuel Cells“. In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91071.
Der volle Inhalt der QuelleB, Haritha, Tarakanath Kobaku, Mosaddique Nawaz Hussain und Vivek Agarwal. „Stability Enhancement of Cascaded Power Converters Using Parallel Virtual Impedance Via Output Impedance Shaping of the Source Converter“. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2020. http://dx.doi.org/10.1109/pedes49360.2020.9379354.
Der volle Inhalt der QuelleVarga, L. D., und N. A. Losic. „Synthesis of zero-impedance converter“. In Applied Power Electronics Conference and Exposition. IEEE, 1990. http://dx.doi.org/10.1109/apec.1990.66415.
Der volle Inhalt der QuelleRaghuram, M., Avneet K. Chauhan und Santosh K. Singh. „Switched capacitor impedance matrix converter“. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017. http://dx.doi.org/10.1109/ecce.2017.8095906.
Der volle Inhalt der QuelleSato, Kazushi, Ryuji Kuse und Takeshi Fukusako. „Negative Impedance Converter with reduced real part of input impedance“. In 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE, 2019. http://dx.doi.org/10.1109/iwem.2019.8887925.
Der volle Inhalt der QuelleEguchi, Keisuke, und Takeshi Fukusako. „Stability analysis of negative impedance converter“. In 2017 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2017. http://dx.doi.org/10.1109/compem.2017.7912760.
Der volle Inhalt der Quelle„Impedance Source Converter Topologies and Applications“. In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018. http://dx.doi.org/10.1109/iecon.2018.8591420.
Der volle Inhalt der Quelle