Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Impedance characteristic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Impedance characteristic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Impedance characteristic"
Zhao, Hongshan, Weitao Zhang und Yan Wang. „Characteristic Impedance Analysis of Medium-Voltage Underground Cables with Grounded Shields and Armors for Power Line Communication“. Electronics 8, Nr. 5 (23.05.2019): 571. http://dx.doi.org/10.3390/electronics8050571.
Der volle Inhalt der QuelleNauwelaers, B., und A. van de Capelle. „Characteristic impedance of stripline“. Electronics Letters 23, Nr. 18 (1987): 930. http://dx.doi.org/10.1049/el:19870655.
Der volle Inhalt der QuelleZhang, Y., und J. L. Liu. „Impedance matching condition analysis of the multi-filar tape-helix Blumlein PFL with discontinuous dielectrics“. Laser and Particle Beams 30, Nr. 4 (16.10.2012): 639–50. http://dx.doi.org/10.1017/s026303461200050x.
Der volle Inhalt der QuelleTorrungrueng, D., P. Y. Chou und M. Krairiksh. „An extendedZY T-chart for conjugately characteristic-impedance transmission lines with active characteristic impedances“. Microwave and Optical Technology Letters 49, Nr. 8 (2007): 1961–64. http://dx.doi.org/10.1002/mop.22626.
Der volle Inhalt der QuelleWong, George S. K. „Characteristic impedance of humid air“. Journal of the Acoustical Society of America 80, Nr. 4 (Oktober 1986): 1203–4. http://dx.doi.org/10.1121/1.394468.
Der volle Inhalt der QuelleBhattacharya, D. „Characteristic impedance of coplanar waveguide“. Electronics Letters 21, Nr. 13 (1985): 557. http://dx.doi.org/10.1049/el:19850393.
Der volle Inhalt der QuelleBrews, J. R. „Characteristic Impedance of Microstrip Lines“. IEEE Transactions on Microwave Theory and Techniques 35, Nr. 1 (Januar 1987): 30–34. http://dx.doi.org/10.1109/tmtt.1987.1133591.
Der volle Inhalt der QuelleKrukonis, Audrius, und Šarūnas Mikučionis. „THE FREQUENCY CHARACTERISTICS OF COUPLED MICROSTRIP LINES / SUSIETŲJŲ MIKROJUOSTELINIŲ LINIJŲ DAŽNINĖS CHARAKTERISTIKOS“. Mokslas - Lietuvos ateitis 5, Nr. 2 (24.05.2013): 173–80. http://dx.doi.org/10.3846/mla.2013.33.
Der volle Inhalt der QuelleKrukonis, Audrius, und Šarūnas Mikučionis. „EFFECT OF NON-UNIFORMITY OF THE MULTICONDUCTOR LINE CONSTRUCTIONAL PARAMETERS ON THE FREQUENCY CHARACTERISTICS OF THE MEANDER MICROSTRIP DELAY LINE / DAUGIALAIDĖS LINIJOS PARAMETRŲ NETOLYGUMŲ ĮTAKA MEANDRINIŲ VĖLINIMO LINIJŲ DAŽNINĖMS CHARAKTERISTIKOMS“. Mokslas – Lietuvos ateitis 6, Nr. 2 (24.04.2014): 211–17. http://dx.doi.org/10.3846/mla.2014.32.
Der volle Inhalt der QuelleWan, Li Bin, Ya Lin Guan und Xin Kun Tang. „A Bandpass Filter Based on Novel SCRLH Transmission Line Structure“. Applied Mechanics and Materials 456 (Oktober 2013): 624–26. http://dx.doi.org/10.4028/www.scientific.net/amm.456.624.
Der volle Inhalt der QuelleDissertationen zum Thema "Impedance characteristic"
Hickerson, Anna Iwaniec Burdick Joel Wakeman. „An experimental analysis of the characteristic behaviors of an impedance pump /“. Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05232005-141405.
Der volle Inhalt der QuelleForsberg, Alexander. „Utvärdering av HyperLynx Signal Integrity genom jämförelse av simulerade och uppmätta signaler“. Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-21206.
Der volle Inhalt der QuelleSimulations are an important part of the process of designing new computer boards at the Centre of Excellence - Computers at Saab AB in Jönköping. The earlier problems and weaknesses in the design can be found during the design process the less time and money it will take to fix them. The engineers at CoE uses HyperLynx, an analysis and simulation software from Mentor Graphics, to simulate all the critical nets at the board. By doing so, the majority of the problems can be fixed before the prototyping stage. However, the engineers need to know how the simulated signals relate to real signals if the simulator is to be useful. Therefore the question to be answered in this study is how well does the simulated signals in HyperLynx imitate real signals? The question was answered by comparing simulated signals with measurements of corresponding signals on a test board. Overall the shapes of the signals are matching for both which reflections occurs and the timing of the reflections. The only noticeable difference found throughout the study is a slightly smaller amplitude of the reflections for the simulated signals compared to the corresponding measured signal. Due to these results, HyperLynx can be considered a high quality simulator.
Puváková, Alžbeta. „Příprava a optimalizace perovskitových solárních článků“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-433525.
Der volle Inhalt der QuelleHolínský, Jan. „Měření pasivních kmitočtových výhybek pro reproduktorové soustavy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442518.
Der volle Inhalt der QuelleKermani, Behnoud. „Application of P-wave Reflection Imaging to Unknown Bridge Foundations and Comparison with Other Non-Destructive Test Methods“. Master's thesis, Temple University Libraries, 2013. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/234113.
Der volle Inhalt der QuelleM.S.C.E.
Proper design of bridge structures requires an appreciation for the possible failure mechanisms that can develop over the lifetime of the bridge, many of which are related to natural hazards. For example, scour is one of the most common causes of bridge failures. Scour occurs due to the erosion of soil and sediment within a channel with flowing water. During a flood event, the extent of scour can be so great that it can destabilize an existing bridge structure. In order to evaluate the scour potential of a bridge, it is necessary to have information regarding the substructure, particularly the bridge foundations. However, as of 2011 there are more than 40,000 bridges across United States with unknown foundations. Generally for these bridges there are no design or as-built plans available to show the type, depth, geometry, or materials incorporated into the foundations. Several non-destructive testing (NDT) methods have been developed to evaluate these unknown foundations. The primary objective of this research is to identify the most current and widely used NDT methods for determining the embedment depth of unknown bridge foundations and to compare these methods to an ultrasonic P-wave reflection imaging system. The ultrasonic P-wave reflection system has tremendous potential to provide more information and address several short-comings of other NDT methods. A laboratory study was initiated to explore various aspects related to the P-wave system performance, in order to characterize the limitations of the system in evaluation of unknown foundations prior to deployment in field studies. Moreover, field testing was performed using the P-wave system and a number of the current NDT methods at two selected bridge foundations to allow comparison between the results.
Temple University--Theses
Guzej, Michal. „Rotující odtržení v prostoru odstředivého kompresoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230025.
Der volle Inhalt der QuelleRezaei, Niya Seyed Mohammad. „Process modeling of impedance characteristics of proton exchange membrane fuel cells“. Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53653.
Der volle Inhalt der QuelleApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Villamil, Susan Simmons. „Impedance characteristics and grain boundary effects in titanate-based multilayer ceramic capacitors“. Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/94507.
Der volle Inhalt der QuelleM.S.
Habtemariam, Filmon A. „HIGH-FREQUENCY IMPEDANCE CHARACTERISTICS AND HEALTH CONDITION MONITORING OF OVERHEAD POWER LINES“. University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1472735633.
Der volle Inhalt der QuelleLee, Iljae. „Acoustic characteristics of perforated dissipative and hybrid silencers“. Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1117631229.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages; contains xvi, 195 p.; also includes graphics. Includes bibliographical references (p. 183-195). Available online via OhioLINK's ETD Center
Bücher zum Thema "Impedance characteristic"
Hänninen, Seppo. Single phase earth faults in high impedance grounded networks: Characteristics, indication and location. Espoo [Finland]: Technical Research Centre of Finland, 2001.
Den vollen Inhalt der Quelle findenMaruschek, Joseph W. Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics. Cleveland, Ohio: Lewis Research Center, 1993.
Den vollen Inhalt der Quelle findenSchroeder, Dana L. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS. Cleveland, Ohio: Lewis Research Center, 1993.
Den vollen Inhalt der Quelle findenCharacteristic impedance of microstrip lines. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenSchulz, Frederick Fay. Development of a new method of measuring the characteristic impedance and complex wave number of a porous acoustic material. 1987.
Den vollen Inhalt der Quelle findenQ, Lee Richard, und United States. National Aeronautics and Space Administration., Hrsg. Linearly tapered slot antenna impedance characteristics. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenL, Kory Carol, Wilson Jeffrey D und United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Den vollen Inhalt der Quelle findenL, Kory Carol, Wilson Jeffrey D und United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Den vollen Inhalt der Quelle findenL, Kory Carol, Wilson Jeffrey D und United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Impedance characteristic"
Westerhof, Nicolaas, Nikolaos Stergiopulos und Mark I. M. Noble. „Wave Speed and Characteristic Impedance“. In Snapshots of Hemodynamics, 245–48. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6363-5_34.
Der volle Inhalt der QuelleArz, U., D. F. Williams und H. Grabinski. „Characteristic Impedance Measurement on Silicon“. In Interconnects in VLSI Design, 147–54. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4349-7_12.
Der volle Inhalt der QuelleBloch, Ingram. „Infinite One-Dimensional Periodic Systems—Characteristic Impedance“. In The Physics of Oscillations and Waves, 216–29. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0050-0_13.
Der volle Inhalt der QuelleYan, Wang, Gong WeiYan, Zhao Shu, Sha Hong und Ren ChaoShi. „Research on Electrode Impedance Characteristic in Electrical Bioimpedance Measurement“. In IFMBE Proceedings, 507–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_142.
Der volle Inhalt der QuelleWang, Chuan Bin, Qiang Shen, Guoqiang Luo und Lian Meng Zhang. „Characteristic Wave Impedance of Ti-Mo System Composites and FGM“. In Materials Science Forum, 1537–40. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.1537.
Der volle Inhalt der QuelleZhang, Guangming. „High-Speed Circuit Power Integrity Design Based on Impedance Characteristic Analysis“. In Communications in Computer and Information Science, 120–30. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5919-4_12.
Der volle Inhalt der QuelleAdegboye, Oluwatayomi, Mehmet Aldağ und Ezgi Deniz Ülker. „Support Vector Machines in Determining the Characteristic Impedance of Microstrip Lines“. In Trends in Data Engineering Methods for Intelligent Systems, 400–408. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79357-9_39.
Der volle Inhalt der QuelleDas, Nirod K. „Complex Characteristic Impedance of a Leaky Conductor-Backed Slotline: Alternate Analysis Methods“. In Directions for the Next Generation of MMIC Devices and Systems, 315–21. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_36.
Der volle Inhalt der QuelleKhaled, B. A., und B. A. Saber. „New technique of characteristic impedance determination within the arterial system: part II“. In IFMBE Proceedings, 1361–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_360.
Der volle Inhalt der QuelleAbdessalem, K. B., S. B. Abdessalem, R. B. Salah und S. Mansouri. „New technique of characteristic impedance determination within the arterial system: Part I“. In IFMBE Proceedings, 1953–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_519.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Impedance characteristic"
Suthasinee Lamultree und Danai Torrungrueng. „On the characteristics of conjugately characteristic-impedance transmission lines with active characteristic impedance“. In 2006 Asia-Pacific Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/apmc.2006.4429411.
Der volle Inhalt der QuelleWilliams, Dylan F., und Bradley K. Alpert. „Causality and Characteristic Impedance“. In 54th ARFTG Conference Digest. IEEE, 2000. http://dx.doi.org/10.1109/arftg.1999.327366.
Der volle Inhalt der QuelleBai, Hanlin, Fan Gan, Nana Zhang und Yunge Li. „Characteristic Impedance Analysis of Transmission Lines Considering Frequency Characteristics“. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2018. http://dx.doi.org/10.1109/iaeac.2018.8577786.
Der volle Inhalt der QuelleWilliams, Dylan F., Uwe Arz und Hartmut Grabinski. „Accurate Characteristic Impedance Measurement on Silicon“. In 51st ARFTG Conference Digest. IEEE, 1998. http://dx.doi.org/10.1109/arftg.1998.327296.
Der volle Inhalt der QuelleVandenberghe, S., D. Schreurs, G. Carchon, B. Nauwelaers und W. de Raedt. „Characteristic Impedance Extraction Using Calibration Comparison“. In 57th ARFTG Conference Digest. IEEE, 2001. http://dx.doi.org/10.1109/arftg.2001.327474.
Der volle Inhalt der QuelleUsman, Mohammad A. U. „Characteristic impedance planning in PCB design“. In SOUTHEASTCON 2014. IEEE, 2014. http://dx.doi.org/10.1109/secon.2014.6950703.
Der volle Inhalt der QuelleWu, Zhaoyang, Xiaofeng Xuan, Rui Zhang, Jianbo Mao, Mingwu Yang und Wanshun Jiang. „New definition of slotline characteristic impedance“. In 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). IEEE, 2009. http://dx.doi.org/10.1109/mape.2009.5355867.
Der volle Inhalt der QuelleXue, Changsen, Zhidong Qi, Minqiang Xu und Weiping Ge. „Research on PEMFC fractional impedance characteristic modeling“. In 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018. http://dx.doi.org/10.1109/ccdc.2018.8407650.
Der volle Inhalt der QuelleMoulay, Ahmed, und Tarek Djerafi. „Gysel Power Divider with Fixed Characteristic Impedance“. In 2020 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2020. http://dx.doi.org/10.1109/ims30576.2020.9223881.
Der volle Inhalt der QuelleXie, Meng, Hongxia Wang, Xiaobin Zhang, Zhaohui Gao und Weilin Li. „Study on impedance characteristic of aircraft cables“. In 2014 17th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2014. http://dx.doi.org/10.1109/icems.2014.7013566.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Impedance characteristic"
Geisler, Corinna, Mark Hübers und Manfred Müller. Assessment of adult malnutrition with bioelectrical impedance analysis. Universitatsbibliothek Kiel, September 2018. http://dx.doi.org/10.21941/manueltask13.
Der volle Inhalt der QuelleSwanson, D. B., A. G. MacDiarmid und A. J. Epstein. Impedance Profiling: A Convenient Technique for Determining the Redox or Protonic Acid Doping Characteristics of Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, März 1991. http://dx.doi.org/10.21236/ada233941.
Der volle Inhalt der Quelle