Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: IMMUNOPHARMACOLOGICAL.

Zeitschriftenartikel zum Thema „IMMUNOPHARMACOLOGICAL“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "IMMUNOPHARMACOLOGICAL" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ielpo, M. T. L., A. Basile, R. Miranda, V. Moscatiello, C. Nappo, S. Sorbo, E. Laghi, M. M. Ricciardi, L. Ricciardi und M. L. Vuotto. „Immunopharmacological properties of flavonoids“. Fitoterapia 71 (August 2000): S101—S109. http://dx.doi.org/10.1016/s0367-326x(00)00184-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kovalenko, L. P., E. V. Shipaeva, S. V. Alekseeva, A. V. Pronin, A. D. Durnev, T. A. Gudasheva, R. U. Ostrovskaja und S. B. Seredenin. „Immunopharmacological properties of noopept“. Bulletin of Experimental Biology and Medicine 144, Nr. 1 (Juli 2007): 49–52. http://dx.doi.org/10.1007/s10517-007-0251-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhang, Jianmei, Stephanie Triseptya Hunto, Yoonyong Yang, Jongsung Lee und Jae Youl Cho. „Tabebuia impetiginosa: A Comprehensive Review on Traditional Uses, Phytochemistry, and Immunopharmacological Properties“. Molecules 25, Nr. 18 (18.09.2020): 4294. http://dx.doi.org/10.3390/molecules25184294.

Der volle Inhalt der Quelle
Annotation:
Tabebuia impetiginosa, a plant native to the Amazon rainforest and other parts of Latin America, is traditionally used for treating fever, malaria, bacterial and fungal infections, and skin diseases. Additionally, several categories of phytochemicals and extracts isolated from T. impetiginosa have been studied via various models and displayed pharmacological activities. This review aims to uncover and summarize the research concerning T. impetiginosa, particularly its traditional uses, phytochemistry, and immunopharmacological activity, as well as to provide guidance for future research. A comprehensive search of the published literature was conducted to locate original publications pertaining to T. impetiginosa up to June 2020. The main inquiry used the following keywords in various combinations in titles and abstracts: T. impetiginosa, Taheebo, traditional uses, phytochemistry, immunopharmacological, anti-inflammatory activity. Immunopharmacological activity described in this paper includes its anti-inflammatory, anti-allergic, anti-autoimmune, and anti-cancer properties. Particularly, T. impetiginosa has a strong effect on anti-inflammatory activity. This paper also describes the target pathway underlying how T. impetiginosa inhibits the inflammatory response. The need for further investigation to identify other pharmacological activities as well as the exact target proteins of T. impetiginosa was also highlighted. T. impetiginosa may provide a new strategy for prevention and treatment of many immunological disorders that foster extensive research to identify potential anti-inflammatory and immunomodulatory compounds and fractions as well as to explore the underlying mechanisms of this herb. Further scientific evidence is required for clinical trials on its immunopharmacological effects and safety.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kawakita, Takuya. „Immunopharmacological effects of Kampo medicines“. Folia Pharmacologica Japonica 132, Nr. 5 (2008): 276–79. http://dx.doi.org/10.1254/fpj.132.276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Borriello, Francesco, Francescopaolo Granata, Gilda Varricchi, Arturo Genovese, Massimo Triggiani und Gianni Marone. „Immunopharmacological modulation of mast cells“. Current Opinion in Pharmacology 17 (August 2014): 45–57. http://dx.doi.org/10.1016/j.coph.2014.07.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Simbirtsev, A. S. „Immunopharmacological aspects of the cytokine system“. Bulletin of Siberian Medicine 18, Nr. 1 (16.05.2019): 84–95. http://dx.doi.org/10.20538/1682-0363-2019-1-84-95.

Der volle Inhalt der Quelle
Annotation:
Cytokines represent a unique family of endogenous polypeptide mediators of intercellular interaction. From an immunopharmacological point of view cytokines can be marked out as a new, separate immunoregulatory molecule system and have some common biochemical properties and pleiotropic type of biological activity. In the cytokine regulatory system both reduction and elevation of cytokine levels can cause pathology. Several endogenous systems exist to control cytokine elevation and prevent tissue pathology. When synthesized simultaneously, cytokines form a cytokine chain. Deletion of any unit of this chain leads to the break in the formation of immunopathology. Cytokines as therapeutic preparations have evident advantages but also some limitations such as pharmacokinetics with short circulation period, adverse effects due to pleiotropic mode of action, and injectable drug forms. Rational design for clinical cytokine application could be linked with the development of prolonged and local drug forms or personalized cytokine therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Farjam, Mojtaba, Guang-Xian Zhang, Bogoljub Ciric und Abdolmohamad Rostami. „Emerging immunopharmacological targets in multiple sclerosis“. Journal of the Neurological Sciences 358, Nr. 1-2 (November 2015): 22–30. http://dx.doi.org/10.1016/j.jns.2015.09.346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kouttab, N., M. Prada und B. Brunetti. „Immunopharmacological profile of two synthetic tripeptides“. International Journal of Immunopharmacology 10 (Januar 1988): 126. http://dx.doi.org/10.1016/0192-0561(88)90472-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

IVANOVSKA, NINA, STEFAN PHILIPOV und PEPA GEORGIEVA. „IMMUNOPHARMACOLOGICAL ACTIVITY OF APORPHINOID ALKALOID OXOGLAUCINE“. Pharmacological Research 35, Nr. 4 (April 1997): 267–72. http://dx.doi.org/10.1006/phrs.1996.9994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kirchhof, Julia, Liubov Petrakova, Alexandra Brinkhoff, Sven Benson, Justine Schmidt, Maike Unteroberdörster, Benjamin Wilde, Ted J. Kaptchuk, Oliver Witzke und Manfred Schedlowski. „Learned immunosuppressive placebo responses in renal transplant patients“. Proceedings of the National Academy of Sciences 115, Nr. 16 (02.04.2018): 4223–27. http://dx.doi.org/10.1073/pnas.1720548115.

Der volle Inhalt der Quelle
Annotation:
Patients after organ transplantation or with chronic, inflammatory autoimmune diseases require lifelong treatment with immunosuppressive drugs, which have toxic adverse effects. Recent insight into the neurobiology of placebo responses shows that associative conditioning procedures can be employed as placebo-induced dose reduction strategies in an immunopharmacological regimen. However, it is unclear whether learned immune responses can be produced in patient populations already receiving an immunosuppressive regimen. Thus, 30 renal transplant patients underwent a taste-immune conditioning paradigm, in which immunosuppressive drugs (unconditioned stimulus) were paired with a gustatory stimulus [conditioned stimulus (CS)] during the learning phase. During evocation phase, after patients were reexposed to the CS, T cell proliferative capacity was significantly reduced in comparison with the baseline kinetics of T cell functions under routine drug intake (ƞp2 = 0.34). These data demonstrate, proof-of-concept, that learned immunosuppressive placebo responses can be used as a supportive, placebo-based, dose-reduction strategy to improve treatment efficacy in an ongoing immunopharmacological regimen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kitano, Takatoshi, Hiroaki Matsuno, Isao Matsushita, Chisako Okada und Haruo Tsuji. „Immunopharmacological studies of bucillamine in rheumatoid arthritis.“ Ensho 12, Nr. 3 (1992): 251–56. http://dx.doi.org/10.2492/jsir1981.12.251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zamorina, S. A., und S. V. Kochurova. „IMMUNOPHARMACOLOGICAL ASPECTS OF THE CHORIONIC GONADOTROPIN APPLICATION“. Вестник Пермского университета. Серия «Биология»=Bulletin of Perm University. Biology, Nr. 4 (2019): 471–81. http://dx.doi.org/10.17072/1994-9952-2019-4-471-481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Moilanen, Eeva. „Two Faces of Inflammation: An Immunopharmacological View“. Basic & Clinical Pharmacology & Toxicology 114, Nr. 1 (19.12.2013): 2–6. http://dx.doi.org/10.1111/bcpt.12180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Grimová, J., J. Lašťovička und A. Brejcha. „Immunopharmacological profile of new antirheumatic drug flobufen“. International Journal of Immunopharmacology 10 (Januar 1988): 20. http://dx.doi.org/10.1016/0192-0561(88)90208-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Huang, Lei, Mi-Yeon Kim und Jae Youl Cho. „Immunopharmacological Activities of Luteolin in Chronic Diseases“. International Journal of Molecular Sciences 24, Nr. 3 (21.01.2023): 2136. http://dx.doi.org/10.3390/ijms24032136.

Der volle Inhalt der Quelle
Annotation:
Flavonoids have been shown to have anti-oxidative effects, as well as other health benefits (e.g., anti-inflammatory and anti-tumor functions). Luteolin (3′, 4′, 5,7-tetrahydroxyflavone) is a flavonoid found in vegetables, fruits, flowers, and herbs, including celery, broccoli, green pepper, navel oranges, dandelion, peppermint, and rosemary. Luteolin has multiple useful effects, especially in regulating inflammation-related symptoms and diseases. In this paper, we summarize the studies about the immunopharmacological activity of luteolin on anti-inflammatory, anti-cardiovascular, anti-cancerous, and anti-neurodegenerative diseases published since 2018 and available in PubMed or Google Scholar. In this review, we also introduce some additional formulations of luteolin to improve its solubility and bioavailability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Schwiebs, Anja, und Heinfried H. Radeke. „Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis“. Anti-Cancer Agents in Medicinal Chemistry 18, Nr. 5 (21.08.2018): 645–51. http://dx.doi.org/10.2174/1871520617666171012124820.

Der volle Inhalt der Quelle
Annotation:
This review highlights the multiple properties of the birch bark-derived pentacyclic triterpene betulin with special focus on its pharmacological activity in cancer and inflammation. While less well characterized compared to its hydrophilic derivative, betulinic acid, it exhibits potent anticancer activity described in many publications. Indeed, underinvestigated are its immunomodulatory functions in inflammatory diseases that appeared to enhance innate immune cell activities in an adjuvant-like fashion towards an interleukin-12 driven antitumor immunity. Herein, we like to emphasize the simultaneous and dual function of betulin on the basis of recent investigations of the tumor microenvironment and enlighten the potential use of betulin in the control of inflammation-associated carcinogenesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

ElSheikh, Sawsan, Abd elAlim Abd-elAlim, Mohamed Moursi, Eman Ahmed und Mohamed Helal. „Immunopharmacological Evaluation of Synbiotics and Enramycin in Broilers“. Zagazig Veterinary Journal 47, Nr. 1 (01.03.2019): 68–77. http://dx.doi.org/10.21608/zvjz.2019.6202.1015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Steinmann, Gerhard, Anke Esperester und Peter Joller. „Immunopharmacological in vitro Effects of Eleutherococcus senticosus Extracts“. Arzneimittelforschung 51, Nr. 01 (27.12.2011): 76–83. http://dx.doi.org/10.1055/s-0031-1300006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Sakurai, Toshimi, Hiroichi Nagai, Naoki Inagaki und Akihide Koda. „Immunopharmacological study on biphasic skin reaction in mice.“ Japanese Journal of Pharmacology 61 (1993): 332. http://dx.doi.org/10.1016/s0618-8278(19)31741-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Casolaro, V., A. de Paulis, G. de Crescenzo, V. Patella, F. Tatangelo und G. Marone. „Immunopharmacological heterogeneity of human basophils and mast cells“. Pharmacological Research 22 (September 1990): 99. http://dx.doi.org/10.1016/s1043-6618(09)80145-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Lückemann, Laura, Meike Unteroberdörster, Julia Kirchhof, Manfred Schedlowski und Martin Hadamitzky. „Applications and limitations of behaviorally conditioned immunopharmacological responses“. Neurobiology of Learning and Memory 142 (Juli 2017): 91–98. http://dx.doi.org/10.1016/j.nlm.2017.02.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

NAGAI, Hiroichi, Ikuhisa YAKUO, Hiroaki YAMADA, Tsukasa SHIMAZAWA, Akihide KODA, Kazumi NIU, Kyouichi ASANO, Tamotsu SHIMIZU und Masao KASAHARA. „Liver Injury Model in Mice for Immunopharmacological Study“. Japanese Journal of Pharmacology 46, Nr. 3 (1988): 247–54. http://dx.doi.org/10.1016/s0021-5198(19)43309-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Le, Yingying, Xiaojing Yu, Lingfei Ruan, Oumei Wang, Dongfei Qi, Jingjing Zhu, Xiaofeng Lu et al. „The immunopharmacological properties of transforming growth factor beta“. International Immunopharmacology 5, Nr. 13-14 (Dezember 2005): 1771–82. http://dx.doi.org/10.1016/j.intimp.2005.07.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

NAGAI, Hiroichi, Ikuhisa YAKUO, Hiroaki YAMADA, Tsukasa SHIMAZAWA, Akihide KODA, Kazumi NIU, Kyouichi ASANO, Tamotsu SHIMIZU und Masao KASAHARA. „Liver injury model in mice for immunopharmacological study.“ Japanese Journal of Pharmacology 46, Nr. 3 (1988): 247–54. http://dx.doi.org/10.1254/jjp.46.247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sabolović, Domagoj. „Immunopharmacological properties of a protein-bound histamine metabolite“. International Journal of Immunopharmacology 12, Nr. 6 (Januar 1990): 647–55. http://dx.doi.org/10.1016/0192-0561(90)90102-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Isetta, A. M., M. C. Fornasiero, M. Ferrari und D. Trizio. „FCE 20696, a new synthetic immunomodulator: Immunopharmacological profile“. Agents and Actions 28, Nr. 3-4 (November 1989): 283–89. http://dx.doi.org/10.1007/bf01967416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Havinson, V. H., I. S. Pinelis, Yu I. Pinelis, B. I. Kuznik, A. K. Iordanishvili und Maksim A. Vasiliev. „Use of thymalin in the complex treatment of dental diseases“. Russian Journal of Dentistry 24, Nr. 6 (15.12.2020): 406–15. http://dx.doi.org/10.17816/1728-2802-2020-24-6-406-415.

Der volle Inhalt der Quelle
Annotation:
The review summarizes studies that used the timalin immunomodulator in many dental diseases. Issues related to its immunopharmacological action and effective clinical use in inflammatory, traumatic, and other pathological processes of the maxillofacial region were considered. Special attention was paid to their use in medical complexes for diseases of tissues and organs of the oral cavity in various age groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Asl, Sima Heydarzadeh, Sepideh Nikfarjam, Naime Majidi Zolbanin, Reza Nassiri und Reza Jafari. „Immunopharmacological perspective on zinc in SARS-CoV-2 infection“. International Immunopharmacology 96 (Juli 2021): 107630. http://dx.doi.org/10.1016/j.intimp.2021.107630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Nagai, Hiroichi. „Immunopharmacological Approach to Elucidating the Mechanism of Allergic Inflammation“. Allergology International 54, Nr. 2 (2005): 251–61. http://dx.doi.org/10.2332/allergolint.54.251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ohno, Naohito, Toshihide Miura, Noriko N. Miura, Norihisa Chiba, Michiharu Uchiyama, Yoshiyuki Adachi und Toshiro Yadomae. „Inflammatory and Immunopharmacological Activities of Meta-periodate Oxidized Zymosan“. Zentralblatt für Bakteriologie 289, Nr. 1 (Februar 1999): 63–77. http://dx.doi.org/10.1016/s0934-8840(99)80125-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Nagai, Hiroichi, Moritaka Goto, Hiroyuki Kamada, Keiko Boda, Kunihiko Kitagaki und Yuko Takaoka. „Immunopharmacological studies on experimental allergic encephalomyelitis in DA rats“. General Pharmacology: The Vascular System 30, Nr. 2 (Februar 1998): 161–66. http://dx.doi.org/10.1016/s0306-3623(97)00101-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kasai, Hiroshi, Toshio Kawashima, Shigeki Omura und Yukiyoshi Yanagihara. „Immunopharmacological studies of AS-35, a novel antiallergic drug“. Japanese Journal of Pharmacology 49 (1989): 262. http://dx.doi.org/10.1016/s0021-5198(19)56622-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ueno, Makoto, Takahisa Sueita, Osamu Furukawa, Takanori Murakami und Isao Takata. „Immunopharmacological studies on a new antirheumatic drug, TA-383“. Japanese Journal of Pharmacology 58 (1992): 123. http://dx.doi.org/10.1016/s0021-5198(19)48869-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Machado Caetano, J. A., M. T. Paramés, M. J. Babo, A. Santos, A. Bandeira Ferreira, A. A. Freitas, M. R. Clemente Coelho und A. Matthioli Mateus. „Immunopharmacological effects of Saccharomyces boulardii in healthy human volunteers“. International Journal of Immunopharmacology 8, Nr. 3 (Januar 1986): 245–59. http://dx.doi.org/10.1016/0192-0561(86)90106-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Maizels, R. M., und D. A. Denham. „Diethylcarbamazine (DEC): immunopharmacological interactions of an anti-filarial drug“. Parasitology 105, S1 (Januar 1992): S49—S60. http://dx.doi.org/10.1017/s0031182000075351.

Der volle Inhalt der Quelle
Annotation:
SUMMARYAnti-parasitic drugs may achieve their therapeutic effect either by direct activity against the pathogenic organism, or by altering host factors which lead to parasite killing. In this review, we discuss the evidence for an indirect mode of action for one major anti-filarial drug, diethylcarbamazine (DEC). The interpretation most consistent with existing data is that DEC alters arachidonic acid metabolism in microfilariae and in host endothelial cells. These changes may result in vasoconstriction and amplified endothelial adhesion leading to immobilization of microfilarial parasites, enhanced adherence and cytotoxic activity by host platelets and granulocytes. These events would represent activation of the innate, non-specific immune system, independent of the adaptive, antigen-specific, immune response. This model explains the paradox between rapid clearance in vivo and the lack of an in vitro effect, as well as the efficacy of DEC in non-immune animals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

YANAGIHARA, Yukiyoshi, und Akihide KODA. „Immunopharmacological approach to the modulation of IgE antibody formation.“ Folia Pharmacologica Japonica 90, Nr. 1 (1987): 1–11. http://dx.doi.org/10.1254/fpj.90.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Herbort, Carl P., Atsushi Okumura und Manabu Mochizuki. „Immunopharmacological analysis of endotoxin-induced uveitis in the rat“. Experimental Eye Research 48, Nr. 5 (Mai 1989): 693–705. http://dx.doi.org/10.1016/0014-4835(89)90010-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

K. Ohmori, H. Ishii, H. Manabe, Y. Sasaki und S. Okumura. „Immunopharmacological properties of a new antiallergic agent KW-4679“. International Journal of Immunopharmacology 10 (Januar 1988): 63. http://dx.doi.org/10.1016/0192-0561(88)90314-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Kraus-Berthier, Laurence, Georges Rémond, Madeleine Visalli, Danièle Héno, Bernard Portevin und Michel Vincent. „In vivo immunopharmacological properties of tuftsin and four analogs“. Immunopharmacology 25, Nr. 3 (Mai 1993): 261–67. http://dx.doi.org/10.1016/0162-3109(93)90054-t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Yamakawa, H., Y. Ino und M. Iwaki. „Immunopharmacological study of spontaneously sensitized dog with dermatophagoides farinae“. European Journal of Pharmacology 183, Nr. 3 (Juli 1990): 893. http://dx.doi.org/10.1016/0014-2999(90)92720-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

SIMON, D. „Immunopharmacological effects of topical tacrolimus in atopic dermatitis*1“. Journal of Allergy and Clinical Immunology 113, Nr. 2 (Februar 2004): S334. http://dx.doi.org/10.1016/j.jaci.2004.01.710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Bonamin, Leoni Villano. „Immunological research about ultra-high dilution and Homeopathy: From 1994 to 2014“. International Journal of High Dilution Research - ISSN 1982-6206 14, Nr. 2 (27.08.2021): 46. http://dx.doi.org/10.51910/ijhdr.v14i2.784.

Der volle Inhalt der Quelle
Annotation:
Background: This review is part of a special issue of journal “Homeopathy” (ELSEVIER) scheduled for publication in 2015, about the follow-up of researches published in the book titled “Ultra-High Dilution, Physiology and Physics”, written and edited by PC Endler and J Schulte in 1994. In this book, Prof. Madeleine Bastide described experimental models in immunology that were used during the 1980s to investigate high dilution effects on several biological systems. Bastide categorized available papers in four categories: high dilutions of antigens; high dilutions of thymus, bursa and other hormones; high dilutions of cytokines and immunopharmacological activity of silica. The studies about high dilutions of antigens were interrupted from this time onwards. Only the in vitro models developed on antigens and histamine dilutions lasted up to 2009. During this process, a huge multi-centre study was performed, with high reproducibility, and involving different independent laboratories. The studies about highly diluted cytokines, thymulin and other hormones brought some regulatory properties of endogenous substances prepared homeopathically, with special focus on epigenetic mechanisms of highly diluted cytokines. The frequently studied substance was Thymulin 5cH, which improved the activity of phagocytes in viral, bacterial and parasitic infections. Studies about the immunopharmacological activity of silica have assumed a new focus: the putative role of silica as active contaminant present in high dilutions, that is still under discussion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Kazimirskii, А. N., Zh М. Salmasi, G. V. Poryadin und I. V. Kukes. „Studies on the immunopharmacological mechanisms of action of bioregulation agents“. Bulletin of Experimental Biology and Medicine 172, Nr. 7 (2021): 48–51. http://dx.doi.org/10.47056/0365-9615-2021-172-7-48-51.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Smith, Sidney R., Arthur S. Watnick, Ted Kung und Marvin I. Siegel. „In Vitro and in Vivo Immunopharmacological Profile of Sch 40120“. Immunopharmacology and Immunotoxicology 15, Nr. 1 (Januar 1993): 13–44. http://dx.doi.org/10.3109/08923979309066931.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Choy, Y. M., K. N. Leung, C. S. Cho, C. K. Wong und P. K. T. Pang. „Immunopharmacological Studies of Low Molecular Weight Polysaccharide from Angelica Sinensis“. American Journal of Chinese Medicine 22, Nr. 02 (Januar 1994): 137–45. http://dx.doi.org/10.1142/s0192415x94000176.

Der volle Inhalt der Quelle
Annotation:
A low molecular weight polysaccharide has been isolated from the rhizome of Angelica sinensis (Oliv.) Diels (Umbelliferaer). It has a molecular weight of approximately 3,000 and consists of protein (4.73%) and carbohydrate (85.85%) of which 5.2% is uronic acid. It shows strong anti-tumor activity on Ehrlich Ascites tumor bearing mice. It also exhibits immunostimulating activities, both in vitro and in vivo.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ohsumi, Tomoko, Sen Higashi und Kayoko Kuroki. „Immunopharmacological studies of eugenol: Delayed-type hypersensitivity induced by eugenol“. Japanese Journal of Pharmacology 58 (1992): 412. http://dx.doi.org/10.1016/s0021-5198(19)49731-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Suzuki, Tatsuya, Naohito Ohno, Norihisa Chiba, Noriko N. Miura, Yoshiyuki Adachi und Toshiro Yadomae. „Immunopharmacological Activity of the Purified Insoluble Glucan, Zymocel, in Mice“. Journal of Pharmacy and Pharmacology 48, Nr. 12 (Dezember 1996): 1243–48. http://dx.doi.org/10.1111/j.2042-7158.1996.tb03930.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Masao Fujimoto, Isamu Sugwara, Makoto Kimoto, Shigeaki Ishizaka und Tadasu Tsujii. „Immunopharmacological study of CCA (lobenzarit disodium), an anti-arthritis agent“. International Journal of Immunopharmacology 7, Nr. 3 (Januar 1985): 397. http://dx.doi.org/10.1016/0192-0561(85)90439-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

SASAKI, Yasuo, Noriko NAGAI, Tsutomu OKIMURA und Itaru YAMAMOTO. „Immunopharmacological actions of lumin. (I). Anti-allergic actions of lumin.“ Folia Pharmacologica Japonica 89, Nr. 1 (1987): 1–7. http://dx.doi.org/10.1254/fpj.89.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

N. Matsuura, H. Nagai und A. Koda. „Immunopharmacological properties of IPD-1151T, a new anti-allergic drug“. International Journal of Immunopharmacology 10 (Januar 1988): 64. http://dx.doi.org/10.1016/0192-0561(88)90317-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie