Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Immunogenetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Immunogenetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Immunogenetics"
Grennan, D. M. „Immunogenetics“. Annals of the Rheumatic Diseases 44, Nr. 6 (01.06.1985): 429. http://dx.doi.org/10.1136/ard.44.6.429-c.
Der volle Inhalt der QuelleSteinmuller, David. „Immunogenetics“. Mayo Clinic Proceedings 60, Nr. 4 (April 1985): 281. http://dx.doi.org/10.1016/s0025-6196(12)60324-3.
Der volle Inhalt der QuelleVelosa, Jorge A. „Immunogenetics“. Mayo Clinic Proceedings 60, Nr. 10 (Oktober 1985): 721. http://dx.doi.org/10.1016/s0025-6196(12)60757-5.
Der volle Inhalt der QuelleWakeland, Edward K. „Immunogenetics“. Current Opinion in Immunology 14, Nr. 5 (Oktober 2002): 607–8. http://dx.doi.org/10.1016/s0952-7915(02)00391-6.
Der volle Inhalt der QuelleConley, Mary Ellen. „Immunogenetics“. Current Opinion in Immunology 15, Nr. 5 (Oktober 2003): 567–70. http://dx.doi.org/10.1016/s0952-7915(03)00106-7.
Der volle Inhalt der QuelleCallard, R. „Immunogenetics“. Journal of Immunological Methods 78, Nr. 1 (April 1985): 168–69. http://dx.doi.org/10.1016/0022-1759(85)90346-1.
Der volle Inhalt der QuelleAlper, Chester A., und Charles E. Larsen. „Immunogenetics“. Current Opinion in Immunology 16, Nr. 5 (Oktober 2004): 623–25. http://dx.doi.org/10.1016/j.coi.2004.08.003.
Der volle Inhalt der QuelleWakeland, Edward K. „Immunogenetics“. Current Opinion in Immunology 18, Nr. 5 (Oktober 2006): 605–7. http://dx.doi.org/10.1016/j.coi.2006.07.018.
Der volle Inhalt der QuelleBender, K. „Immunogenetics“. Experientia 42, Nr. 10 (Oktober 1986): 1138–47. http://dx.doi.org/10.1007/bf01941288.
Der volle Inhalt der Quelle., Ravina, Chandana Sree Chinnareddyvari, Rangasai Chandra Goli, Dharamshaw CA, Pallavi Rathi, Kiyevi G. Chishi, Gaurav Patel und Kanaka KK. „Poultry immunogenetics“. International Journal of Research in Agronomy 7, Nr. 3S (01.03.2024): 107–12. http://dx.doi.org/10.33545/2618060x.2024.v7.i3sb.408.
Der volle Inhalt der QuelleDissertationen zum Thema "Immunogenetics"
Middleton, D. „Histocompatibility and immunogenetics“. Thesis, Queen's University Belfast, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368778.
Der volle Inhalt der QuelleFanning, Gregory Charles. „Immunogenetics of systemic sclerosis“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284535.
Der volle Inhalt der QuelleThomson, W. „Immunogenetics of rheumatoid arthritis“. Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383908.
Der volle Inhalt der QuelleSaini, Surinder Singh. „Molecular immunogenetics of bovine antibody“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/NQ40388.pdf.
Der volle Inhalt der QuelleAnderson, Amy Elizabeth. „The immunogenetics of Helicobacter infection“. Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414822.
Der volle Inhalt der QuelleGhosh, Soumitra. „Immunogenetics of Type I diabetes“. Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306514.
Der volle Inhalt der QuelleElse, Kathryn J. „Immunogenetics of Trichuris muris infection“. Thesis, University of Nottingham, 1989. http://eprints.nottingham.ac.uk/12875/.
Der volle Inhalt der QuelleTozatto, Maio Karina. „Immunogenetics in sickle cell disease“. Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC093.
Der volle Inhalt der QuelleSickle cell disease (SCD) is the most common inherited hemoglobinopathy, caused by a single nucleotide polymorphism (SNP) in the beta-globin (HBB) gene. This SNP determines the synthesis of S haemoglobin (HbS), which polymerizes under stress conditions, sickling the red blood cell (RBC). Sickle RBC are less deformable, more adherent to the endothelium, and more susceptible to haemolysis. SCD complications are explained by the interaction between haemolysis, vaso-occlusion and inflammatory activation, determined by the RBC sickling. Patients with SCD may present several complications, affecting all organs. Clinical presentation is very heterogeneous, ranging from patients who have mild symptoms to patients who die from disease complications. Because inflammation plays a major role in SCD, polymorphisms in inflammatory genes are potential targets to explain this heterogeneity. Haematopoietic stem cell transplantation (HSCT) is the only curative therapy currently available for SCD, with good results shown after human leukocyte antigen (HLA) identical sibling HSCT. However, most patients will not have a matched sibling donor. Patients with SCD are mostly from African origin, the less represented ethnic group in stem cell donor registries. To date, few studies using local registries were performed to find the probability of having a potential unrelated donor in SCD settings. This study aimed to assess the role of inflammatory genes encoding Toll-like receptors (TLR) in the occurrence of bacterial infections in patients with SCD, because infection is a leading cause of mortality in SCD, and TLR recognize a wide range of bacteria. Patients included had DNA samples and clinical data available. SNPs were genotyped by real-time polymerase chain reaction (RT-PCR). Four hundred thirty patients, mostly from Brazilian and Sub-Saharan African origin, were divided in two groups: infected (n=235, patients who presented at least one episode of bacterial infection), and non-infected (n=195, patients who never presented bacterial infections). The T/A genotype of SNP rs4696480 in TLR2 was less frequent in infected patients (50% versus 67%, OR=0.50, 95% CI 0.34-0.75, p<0.001). In addition, the T/T genotype of this SNP was more frequent among infected patients (15% versus 5%, OR=0.50, 95% CI 0.34-0.75, p<0.001). Previous reports in other settings showed that A/A carriers had higher secretion of inflammatory markers, while T allele was associated with less occurrence and severity of inflammatory diseases. Hence, T/A genotype might express the ideal inflammatory response to defeat bacteria, while the weaker inflammatory response determined by the T/T genotype increases susceptibility to bacterial infections in SCD settings
A doença falciforme (DF) é a hemoglobinopatia hereditária mais frequente, causada por um polimorfismo de nucleotídeo único (SNP) no gene da betaglobina (HBB). A ocorrência desse SNP determina a síntese de hemoglobina S, que polimeriza sob condições de stress, alterando a conformação das hemácias, que adquirem forma de drepanócitos. Os drepanócitos são menos deformáveis, mais aderentes ao endotélio e mais suscetíveis à hemolise. As complicações clínicas da DF podem ser explicadas pela interação entre a vasoclusão, hemólise e ativação inflamatória resultantes da presença dos drepanócitos na circulação. Os pacientes com DF podem apresentar numerosas complicações, que afetam todos os órgãos. A apresentação clínica da DF é muito heterogênea, variando de pacientes pouco sintomáticos a pacientes que falecem por complicações da doença. Visto que a inflamação tem um papel importante na fisiopatologia da DF, polimorfismos em genes inflamatórios poderiam explicar essa heterogeneidade.O transplante de células tronco hematopoiéticas (TCPH) é a única terapia curativa disponível atualmente para a DF, com bons resultados demonstrados em TCPH de doador aparentado antígeno leucocitário humano (HLA) idêntico. Não obstante, a maioria dos pacientes não dispõe de doador aparentado HLA idêntico. A DF ocorre em pacientes normalmente de origem africana, o grupo étnico menos representado em registro de doadores de células tronco. Nos dias de hoje, poucos estudos, utilizando registros locais, avaliaram a probabilidade de encontrar potenciais doadores não aparentados para pacientes com DF. Este estudo teve por objetivo avaliar o papel de genes inflamaórios que codificam receptores Toll-like (TLR) na ocorrência de infecções bacterianas em pacientes com DF, visto que infecção é uma das principais causas de mortalidade em DF, e os TLR reconhecem diversos tipos de bactérias. Os pacientes incluídos no estudo tinham amostras de DNA e dados clínicos disponiveis. Os SNPs foram genotipados por reação em cadeia de polimerase em tempo real (RT-PCR). Quatrocentos e trinta pacientes, a maioria de orgem brasileira ou africana subsaariana, foram divididos em dois grupos, infectados (n=235, pacientes que apresentaram ao menos um episodio de infecção bacteriana), e não infectados (n=195, pacientes que nunca tiveram tais infecções). O genótipo T/A do SNP rs4696480 foi menos frequente em pacientes infectados (50% versus 67%, OR=0.50, 95% CI 0.34-0.75, p<0.001). Além disso, o genótipo T/T do mesmo SNP foi mais frequente em pacientes infectados (15% versus 5%, OR=0.50, 95% CI 0.34-0.75, p<0.001). Estudos prévios mostraram que indivíduos com genótipo A/A apresentavam mais secreção de marcadores inflamatórios, enquanto o alelo T foi associado a menor ocorrência e menor gravidade de doenças inflamatórias
Jeffery, Katherine Joanna Mary. „The immunogenetics of HTLV-I infection“. Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392152.
Der volle Inhalt der QuelleGoodman, Reyna Suzanne. „Immunogenetics of haematopoietic stem cell transplantation“. Thesis, Anglia Ruskin University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.478885.
Der volle Inhalt der QuelleBücher zum Thema "Immunogenetics"
Christiansen, Frank T., und Brian D. Tait, Hrsg. Immunogenetics. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-842-9.
Der volle Inhalt der QuelleO, McDevitt Hugh, Hrsg. Immunogenetics. New York: Springer International, 1992.
Den vollen Inhalt der Quelle findenWilliamson, Alan R. Essential immunogenetics. Oxford: Blackwell Scientific, 1987.
Den vollen Inhalt der Quelle findenWilliamson, Alan R. Essential immunogenetics. Oxford: Blackwell Scientific Publications, 1987.
Den vollen Inhalt der Quelle findenLesage, Sylvie. Immunogenetics: Tolerance and autoimmunity. Hauppauge, N.Y: Nova Science Publishers, 2010.
Den vollen Inhalt der Quelle findenVillanueva, Christian J. Immunogenicity. Hauppauge, N.Y: Nova Science, 2011.
Den vollen Inhalt der Quelle findenBernal, J. E. Human immunogenetics: Principles and clinical applications. London: Taylor & Francis, 1986.
Den vollen Inhalt der Quelle findenMadrigal, Alejandro J., Margita Bencová, Derek Middleton, Dominique Charron und Tibor Nánási, Hrsg. Immunogenetics: Advances and Education. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5486-4.
Der volle Inhalt der QuelleCarvalho, Agostinho, Hrsg. Immunogenetics of Fungal Diseases. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50842-9.
Der volle Inhalt der QuelleM, Khaitov R., und Ataullakhanov R, Hrsg. Immunogenetics and artificial antigens. Moscow: General Editorial Board for Foreign Language Publications, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Immunogenetics"
Welsh, K. I. „Immunogenetics“. In Immunotoxicity of Metals and Immunotoxicology, 37–41. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8443-4_4.
Der volle Inhalt der QuelleLefranc, Marie-Paule. „Immunogenetics“. In Encyclopedia of Systems Biology, 998. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_259.
Der volle Inhalt der QuelleFleischhauer, Katharina, Peter A. Horn und Andrea Harmer. „Immunogenetics Laboratory“. In Establishing a Hematopoietic Stem Cell Transplantation Unit, 111–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59358-6_8.
Der volle Inhalt der QuelleFuggle, Susan V., und Craig J. Taylor. „Histocompatibility and Immunogenetics“. In Handbook of Renal and Pancreatic Transplantation, 55–75. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118305294.ch4.
Der volle Inhalt der QuelleBarnett, A. H. „Immunogenetics of Diabetes“. In Immunology of Endocrine Diseases, 103–21. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4171-7_6.
Der volle Inhalt der QuelleHirbod-Mobarakeh, Armin, Mahsima Shabani, Mahsa Keshavarz-Fathi, Farnaz Delavari, Ali Akbar Amirzargar, Behrouz Nikbin, Anton Kutikhin und Nima Rezaei. „Immunogenetics of Cancer“. In Cancer Immunology, 417–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30845-2_20.
Der volle Inhalt der QuelleAmirzargar, Ali Akbar. „Immunogenetics of Aging“. In Immunology of Aging, 219–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39495-9_16.
Der volle Inhalt der QuelleHirbod-Mobarakeh, Armin, Ali Akbar Amirzargar, Behrouz Nikbin, Mohammad Hossein Nicknam, Anton Kutikhin und Nima Rezaei. „Immunogenetics of Cancer“. In Cancer Immunology, 295–341. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44006-3_17.
Der volle Inhalt der QuelleBach, Fritz H. „Immunogenetics of HLA“. In Chronic Renal Disease, 529–35. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4826-9_54.
Der volle Inhalt der QuelleBurns, A., P. Li und A. Rees. „Immunogenetics of Nephritis“. In Immunology of Renal Disease, 1–28. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3902-1_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Immunogenetics"
Dehais und Mougenot. „An interactive system for database in immunogenetics“. In Proceedings of the Twenty-Seventh Annual Hawaii International Conference on System Sciences. IEEE Comput. Soc. Press, 1994. http://dx.doi.org/10.1109/hicss.1994.323594.
Der volle Inhalt der QuelleWilliams, RMichael, und Edmond J. Yunis. „Abstract 2343: Immunogenetics of cancer and aging“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2343.
Der volle Inhalt der QuelleWilliams, RMichael, und Edmond J. Yunis. „Abstract 2343: Immunogenetics of cancer and aging“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2343.
Der volle Inhalt der QuelleRefae, Sadal, Nathalie Ebran, Jocelyn Gal, Josiane Otto, Damien Giacchero, Delphine Borchiellini, Joel Guigay, Frederique Peyrade, Gerard Milano und Esma Saada. „Abstract 4548: Host immunogenetics and hyperprogression under PD1/PD-L1 checkpoint inhibitors“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4548.
Der volle Inhalt der QuelleREFAE, Sadal, Jocelyn GAL, Nathalie EBRAN, Josiane OTTO, Delphine BORCHIELLINI, Frederic Peyrade, Emmanuel CHAMOREY, Patrick Brest, Gerard Alain Milano und Esma SAADA-BOUZID. „Abstract 1370: Germinal immunogenetics predicts treatment outcome for PD1 PD-L1 checkpoint inhibitors“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1370.
Der volle Inhalt der QuelleREFAE, Sadal, Jocelyn GAL, Nathalie EBRAN, Josiane OTTO, Delphine BORCHIELLINI, Frederic Peyrade, Emmanuel CHAMOREY, Patrick Brest, Gerard Alain Milano und Esma SAADA-BOUZID. „Abstract 1370: Germinal immunogenetics predicts treatment outcome for PD1 PD-L1 checkpoint inhibitors“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1370.
Der volle Inhalt der QuelleLevina, Julia, Leyla Namazova-Baranova, Kirill Savostyanov, Alexander Pushkov, Alexey Burdennyy, Anna Alekseeva, Kamilla Efendieva und Elena Vishneva. „GP5 The immunogenetics and risk factors of pollinosis among russian children. case-control study“. In Faculty of Paediatrics of the Royal College of Physicians of Ireland, 9th Europaediatrics Congress, 13–15 June, Dublin, Ireland 2019. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2019. http://dx.doi.org/10.1136/archdischild-2019-epa.72.
Der volle Inhalt der QuelleEremina, Irina Yurievna. „THE PRACTICE OF STRUCTURING INFORMATION ABOUT ANIMALS IN THE FORM OF A DATABASE AND ITS APPLICATION OPTIONS“. In Themed collection of papers from Foreign international scientific conference «Joint innovation - joint development». Part 2. by HNRI «National development» in cooperation with PS of UA. October 2023. - Harbin (China). Crossref, 2024. http://dx.doi.org/10.37539/231024.2023.16.82.076.
Der volle Inhalt der QuelleGu, Rong, und Hongyun Zhang. „The Application of Improved Immunogenetic Algorithm in Signal Timing“. In 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing. IEEE, 2009. http://dx.doi.org/10.1109/ijcbs.2009.35.
Der volle Inhalt der QuelleGridina, S. L., V. F. Gridin und O. I. Leshonok. „Characterization of High-Producing Cows by their Immunogenetic Status“. In International scientific and practical conference "AgroSMART - Smart solutions for agriculture" (AgroSMART 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/agrosmart-18.2018.49.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Immunogenetics"
Hutchinson, Mark, Janet Coller, Jillian Clark, Ruth Marshall, James Middleton, Vicky Staikopoulos, Melanie Gentgall, Francesca Alvaro und Kathy Heyman. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada613751.
Der volle Inhalt der QuelleHutchinson, Mark, Janet Coller, Jillian Clark, Ruth Marshall, James Middleton, Vicky Staikopoulos, Francesca Alvaro und Kathy Heyman. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2012. http://dx.doi.org/10.21236/ada569291.
Der volle Inhalt der QuelleRodriguez, Jose E., Abebe T. Hassen und James M. Reecy. Immunogenetic Factors Affecting Infectious Bovine Keratoconjuntivitis (IBK). Ames (Iowa): Iowa State University, Januar 2006. http://dx.doi.org/10.31274/ans_air-180814-476.
Der volle Inhalt der QuelleDavid, Lior, Yaniv Palti, Moshe Kotler, Gideon Hulata und Eric M. Hallerman. Genetic Basis of Cyprinid Herpes Virus-3 Resistance in Common Carp. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7592645.bard.
Der volle Inhalt der Quelle