Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Immiscible two-Phase flow“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Immiscible two-Phase flow" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Immiscible two-Phase flow"
Deng, Yongbo, Zhenyu Liu und Yihui Wu. „Topology Optimization of Capillary, Two-Phase Flow Problems“. Communications in Computational Physics 22, Nr. 5 (31.10.2017): 1413–38. http://dx.doi.org/10.4208/cicp.oa-2017-0003.
Der volle Inhalt der QuelleSun, Wen Tao, und Huai Yu Zhang. „Finite element method for two-phase immiscible flow“. Numerical Methods for Partial Differential Equations 15, Nr. 4 (Juli 1999): 407–16. http://dx.doi.org/10.1002/(sici)1098-2426(199907)15:4<407::aid-num1>3.0.co;2-w.
Der volle Inhalt der QuelleMitrović, Darko, und Andrej Novak. „Two-Phase Nonturbulent Flow with Applications“. Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/439704.
Der volle Inhalt der QuelleShao, Sihong, und Tiezheng Qian. „A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces“. Communications in Computational Physics 11, Nr. 3 (März 2012): 831–62. http://dx.doi.org/10.4208/cicp.071210.040511a.
Der volle Inhalt der QuelleLanglo, Peder, und Magne S. Espedal. „Macrodispersion for two-phase, immiscible flow in porous media“. Advances in Water Resources 17, Nr. 5 (Januar 1994): 297–316. http://dx.doi.org/10.1016/0309-1708(94)90033-7.
Der volle Inhalt der QuelleChen, Zhangxin. „Numerical Analysis for Two-phase Flow in Porous Media“. Computational Methods in Applied Mathematics 3, Nr. 1 (2003): 59–75. http://dx.doi.org/10.2478/cmam-2003-0006.
Der volle Inhalt der QuelleYEH, LI-MING. „ON TWO-PHASE FLOW IN FRACTURED MEDIA“. Mathematical Models and Methods in Applied Sciences 12, Nr. 08 (August 2002): 1075–107. http://dx.doi.org/10.1142/s0218202502002045.
Der volle Inhalt der QuelleXu, Peng, Ming-Zhou Yu, Shu-Xia Qiu und Bo-Ming Yu. „Monte Carlo simulation of a two-phase flow in an unsaturated porous media“. Thermal Science 16, Nr. 5 (2012): 1382–85. http://dx.doi.org/10.2298/tsci1205382x.
Der volle Inhalt der QuelleHOWISON, SAM D. „A note on the two-phase Hele-Shaw problem“. Journal of Fluid Mechanics 409 (25.04.2000): 243–49. http://dx.doi.org/10.1017/s0022112099007740.
Der volle Inhalt der QuelleKačur, Jozef, Benny Malengier und Pavol Kišon. „Numerical Modeling of Two Phase Flow under Centrifugation“. Defect and Diffusion Forum 326-328 (April 2012): 221–26. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.221.
Der volle Inhalt der QuelleDissertationen zum Thema "Immiscible two-Phase flow"
Pan, Xuefeng. „Immiscible two-phase flow in a fracture“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0025/NQ47907.pdf.
Der volle Inhalt der QuelleRannou, Guillaume. „Lattice-Boltzmann method and immiscible two-phase flow“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26560.
Der volle Inhalt der QuelleCommittee Chair: Cyrus K. Aidun; Committee Member: Marc K. Smith; Committee Member: S. Mostafa Ghiaasiaan. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bristow, Robert Philip. „Micromodels of immiscible two-phase flow in porous media“. Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235763.
Der volle Inhalt der QuelleNourdeen, Hasan. „Upscaling immiscible capillary-controlled two-phase flow in porous media“. Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/61482.
Der volle Inhalt der QuelleSchmid, Karen Sophie. „Mathematical analysis, scaling and simulation of flow and transport during immiscible two-phase flow“. Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2547.
Der volle Inhalt der QuellePIMENTEL, ISMAEL ANDRADE. „AN ADAPTIVE MESHFREE ADVECTION METHOD FOR TWO-PHASE FLOW PROBLEMS OF INCOMPRESSIBLE AND IMMISCIBLE FLUIDS THROUGH THREEDIMENSIONAL HETEROGENEOUS POROUS MEDIA“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33594@1.
Der volle Inhalt der QuelleCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Esta tese propõe um método meshfree adaptativo de advecção para problemas de fluxo bifásico de fluidos incompressíveis e imiscíveis em meios porosos heterogêneos tridimensionais. Este método se baseia principalmente na combinação do método Semi-Lagrangeano adaptativo com interpolação local meshfree usando splines poliharmônicas como funções de base radial. O método proposto é uma melhoria e uma extensão do método adaptativo meshfree AMMoC proposto por Iske e Kaser (2005) para modelagem 2D de reservatórios de petróleo. Inicialmente este trabalho propõe um modelo em duas dimensões, contribuindo com uma melhoria significativa no cálculo do Laplaciano, utilizando os métodos meshfree de Hermite e Kansa. Depois, o método é ampliado para três dimensões (3D) e para um meio poroso heterogêneo. O método proposto é testado com o problema de five spot e os resultados são comparados com os obtidos por sistemas bem conhecidos na indústria de petróleo.
This thesis proposes an adaptive meshfree advection method for two-phase flow problems of incompressible and immiscible fluids through three-dimensional heterogeneous porous media. This method is based mainly on a combination of adaptive semi-Lagrangian method with local meshfree interpolation using polyharmonic splines as radial basis functions. The proposed method is an improvement and extension of the adaptive meshfree advection scheme AMMoC proposed by Iske and Kaser (2005) for 2D oil reservoir modeling. Initially this work proposes a model in two dimensions, contributing to a significant improvement in the calculation of the Laplacian, using the meshfree methods of Hermite and Kansa. Then, the method is extended to three dimensions (3D) and a heterogeneous porous medium. The proposed method is tested with the five spot problem and the results are compared with those obtained by well-known systems in the oil industry.
Quenjel, El Houssaine. „Volumes finis/Eléments finis pour des écoulements diphasiques compressibles en milieux poreux hétérogènes et anisotropes“. Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0059/document.
Der volle Inhalt der QuelleThe objective of this thesis is the development and the analysis of robust and consistent numerical schemes for the approximation of compressible two-phase flow models in anisotropic and heterogeneous porous media. A particular emphasis is set on the anisotropy together with the geometric complexity of the medium. The mathematical problem is given in a system of two degenerate and coupled parabolic equations whose main variables are the nonwetting saturation and the global pressure. In view of the difficulties manifested in the considered system, its cornerstone equations are approximated with two different classes of the finite volume family. The first class consists of combining finite elements and finite volumes. Based on standard assumptions on the space discretization and on the permeability tensor, a rigorous convergence analysis of the scheme is carried out thanks to classical arguments. To dispense with the underlined assumptions on the anisotropy ratio and on the mesh, the model has to be first formulated in the factional flux formulation. Moreover, the diffusive term is discretized by a Godunov-like scheme while the convective fluxes are approximated using an upwind technique. The resulting scheme preserves the physical ranges of the computed solution and satisfies the coercivity property. Hence, the convergence investigation holds. Numerical results show a satisfactory qualitative behavior of the scheme even if the medium of interest is anisotropic. The second class allows to consider more general meshes and tensors. It is about a new positive nonlinear discrete duality finite volume method. The main point is to approximate a part of the fluxes using a non standard technique. The application of this ideato a nonlinear diffusion equation yields surprising results. Indeed,not only is the discrete maximum property fulfilled but also the convergence of the scheme is established. Practically, the proposed method shows great promises since it provides a positivity-preserving and convergent scheme with optimal convergence rates
Zhang, Duo. „Lattice Boltzmann modelling of immiscible two-phase flows“. Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2038199/.
Der volle Inhalt der QuelleStrinopoulos, Theofilos Hou Thomas Y. „Upscaling immiscible two-phase flows in an adaptive frame /“. Diss., Pasadena, Calif. : California Institute of Technology, 2006. http://resolver.caltech.edu/CaltechETD:etd-02192006-165348.
Der volle Inhalt der QuellePi, Haohong. „Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.
Der volle Inhalt der QuelleThe core-flood experiments are the usual method used to study the immiscible biphasic flow. However, beside reproducibility aspects, a significant drawback is that with these black box experiments, we cannot observe and capture key phenomena at the pore scale, including interfacial interactions and details about mobilization of the trapped oil (e.g. size and distribution of residual ganglia). This is why microfluidic micromodel devices are now extensively used in lab EOR experiments. They preserve the structural details of the rock while offering advantages such as easy cleaning and repeatability. Visual tracking of fluids displacement is particularly important as it can provide more details about the behavior of wetting and non-wetting phases in porous media, aiding in targeted strategies to enhance oil recovery rates. This thesis explores the intricate dynamics of immiscible two-phase flows combines microfluidic porous medium models, often referred to as “reservoir-on-a-chip”, with numerical simulations.In our experiments, we used morphological to monitor and record displacement behavior in biphasic flow, systematically studying the effects of different capillary numbers (Ca) and viscosity ratios (M) on the flow mechanisms and the mobilization of residual oil. The results indicated that during waterflooding, displacement exhibited characteristics of viscous fingering at lower Ca and M values. By increasing the flow rate to enhance Ca tenfold, the residual oil showing lateral and even backward invasion of flow paths without significant changes in cluster size. With increasing M, both the cluster size and the maximum cluster size decreased, leading to a more uniform distribution of residual oil and lower Sor. The mobilization mechanism of residual oil manifested as ganglia breakup, with newly formed smaller ganglia being mobilized under higher pressures. The distribution of residual oil clusters is consistent with percolation theory, where the scaling exponent τ is 2.0. All experimental results for Sor and corresponding Ca values collapsed onto the classical Capillary Desaturation Curve (CDC).The experimental findings served as a foundation for developing a numerical model using a phase-field approach. This model, based on the Cahn-Hilliard-Navier-Stokes system of equations, effectively captures the bi-phasic flow behavior of immiscible fluids within confined domains. It incorporates conservation of mass and momentum equations, enhanced by phase separation dynamics and interfacial energy considerations. The numerical simulations, executed on the open-source finite element platform Fenics, align qualitatively and quantitatively with experimental observations, affirming the accuracy of model in predicting fluid behaviors under varied physical conditions, advancing our understanding of pore-scale fluid dynamics. Simulations focus on dissecting the influence of fluid properties and operational conditions on the displacement mechanisms at the pore scale
Bücher zum Thema "Immiscible two-Phase flow"
Corey, A. T. Mechanics of immiscible fluids in porous media. 2. Aufl. Littleton, Colo., U.S.A: Water Resources Publications, 1986.
Den vollen Inhalt der Quelle findenCorey, A. T. Mechanics of immiscible fluids in porous media. 3. Aufl. Highlands Ranch, Colo: Water Resources Publications, 1994.
Den vollen Inhalt der Quelle findenCorey, T. Arthur. Mechanics of Immiscible Fluids in Porous Media. 2. Aufl. Water Resources Pubns, 1986.
Den vollen Inhalt der Quelle findenWeyer. Subsurface Contamination by Immiscible F. Taylor & Francis, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Immiscible two-Phase flow"
Tutkun, O. „Condensate Flow Pattern of Immiscible Liquid Mixtures“. In Two-Phase Flow Heat Exchangers, 325–41. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_9.
Der volle Inhalt der QuelleWang, Yuhang, und Saman A. Aryana. „Nonequilibrium Effects in Immiscible Two-Phase Flow“. In Advances in Petroleum Engineering and Petroleum Geochemistry, 81–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_20.
Der volle Inhalt der QuelleArbogast, Todd, Jim Douglas und Juan E. Santos. „Two-Phase Immiscible Flow in Naturally Fractured Reservoirs“. In Numerical Simulation in Oil Recovery, 47–66. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-6352-1_3.
Der volle Inhalt der QuelleVenkateshwarlu, Akepogu, und Ram Prakash Bharti. „Hydrodynamics of Two-Phase Immiscible Flow in T-Junction Microchannel“. In Fluid Mechanics and Fluid Power, Volume 5, 267–75. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6074-3_25.
Der volle Inhalt der QuelleKumar, Rohit, Chandan Nashine, Arman Mohaddin Nadaf, Harish Kumar Tomar und Manmohan Pandey. „Experimental Investigation of Two-Phase Immiscible Liquid Flow Through a Microchannel“. In Fluid Mechanics and Fluid Power, Volume 4, 553–62. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7177-0_46.
Der volle Inhalt der QuelleGuo, Feng, und Saman A. Aryana. „A Microfluidic Study of Immiscible Drainage Two-Phase Flow Regimes in Porous Media“. In Advances in Petroleum Engineering and Petroleum Geochemistry, 73–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_18.
Der volle Inhalt der QuelleCancès, Clément, und Flore Nabet. „Finite Volume Approximation of a Degenerate Immiscible Two-Phase Flow Model of Cahn–Hilliard Type“. In Springer Proceedings in Mathematics & Statistics, 431–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57397-7_36.
Der volle Inhalt der QuelleBarros, W. Q., A. P. Pires und Á. M. M. Peres. „Approximate Solution for One-Dimensional Compressible Two-Phase Immiscible Flow in Porous Media for Variable Boundary Conditions“. In Integral Methods in Science and Engineering, 1–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07171-3_1.
Der volle Inhalt der QuelleJoseph, D. D., P. Singh und K. Chen. „Couette Flows, Rollers, Emulsions, Tall Taylor Cells, Phase Separation and Inversion, and a Chaotic Bubble in Taylor-Couette Flow of Two Immiscible Liquids“. In NATO ASI Series, 169–89. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5793-3_17.
Der volle Inhalt der QuelleZhang, X. H., Q. J. und X. B. „Comparisons of Static, Quasi-Static and Dynamic 3D Porous Media Scale Network Models for Two-Phase Immiscible Flow in Porous Media“. In New Trends in Fluid Mechanics Research, 530–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_175.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Immiscible two-Phase flow"
Lunda, Filip, Simona Fialová und Marcela Pírková. „Measurement of two-phase immiscible flow“. In THE PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON MARITIME EDUCATION AND TRAINING (The 5th ICMET) 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0121200.
Der volle Inhalt der QuelleIvanov, Denis Alexandrovich, und Mariela G. Araujo Fresky. „Dynamics of Two-Phase Immiscible Pulsed Flow“. In SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/99678-ms.
Der volle Inhalt der QuelleMewes, Dieter, Martin Nadler und Alexander Tokarz. „THE EFFECT OF EMULSIFICATION ON THE FLOW BEHAVIOUR OF TWO IMMISCIBLE LIQUIDS IN HORIZONTAL PIPES“. In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.100.
Der volle Inhalt der QuelleHANYGA, A. „DYNAMICS OF IMMISCIBLE TWO-PHASE FLUID RESERVOIR FLOW“. In Theoretical and Computational Acoustics 2003 - The Sixth International Conference (ICTCA). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702609_0014.
Der volle Inhalt der QuelleBakhtiyarov, Sayavur I., und Dennis A. Siginer. „A NOTE ON THE LAMINAR CORE-ANNULAR FLOW OF TWO IMMISCIBLE FLUIDS IN A HORIZONTAL TUBE“. In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.110.
Der volle Inhalt der QuelleTanaka, M., Yoshimichi Hagiwara, T. None, M. Nakamura und H. Hana. „AN EXPERIMENTAL STUDY ON THE INTERACTION BETWEEN AN IMMISCIBLE DROPLET AND A LIQUID TAYLOR-VORTEX FLOW“. In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.130.
Der volle Inhalt der QuelleTadrist, Lounes, und St Radev. „ANALYSIS OF NONPARALLEL FLOW EFFECTS ON THE INSTABILITY OF A CAPILLARY JET IN ANOTHER IMMISCIBLE FLUID“. In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.450.
Der volle Inhalt der QuelleLunda, F., S. Fialová und M. Pírková. „Computational simulation of two-phase immiscible flow in horizontal pipeline“. In Engineering Mechanics 2022. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prague, 2022. http://dx.doi.org/10.21495/51-2-241.
Der volle Inhalt der QuelleZhang, Weifeng, und Xiaohong Wang. „Optimal Ordering for Transport Equations in Immiscible Two-Phase Countercurrent Flow“. In 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE). IEEE, 2023. http://dx.doi.org/10.1109/iceace60673.2023.10442464.
Der volle Inhalt der QuelleArtus, V., und B. Noetinger. „Macrodispersion Approach for Upscaling of Two-Phase, Immiscible Flow in Heterogeneous Porous Media“. In ECMOR VIII - 8th European Conference on the Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609.201405942.
Der volle Inhalt der Quelle