Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Immiscible multiphase flows in heterogeneous porous media“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Immiscible multiphase flows in heterogeneous porous media" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Immiscible multiphase flows in heterogeneous porous media"
Dashtbesh, Narges, Guillaume Enchéry und Benoît Noetinger. „A dynamic coarsening approach to immiscible multiphase flows in heterogeneous porous media“. Journal of Petroleum Science and Engineering 201 (Juni 2021): 108396. http://dx.doi.org/10.1016/j.petrol.2021.108396.
Der volle Inhalt der QuelleCancès, Clément, Thomas O. Gallouët und Léonard Monsaingeon. „Incompressible immiscible multiphase flows in porous media: a variational approach“. Analysis & PDE 10, Nr. 8 (18.08.2017): 1845–76. http://dx.doi.org/10.2140/apde.2017.10.1845.
Der volle Inhalt der QuelleChaouche, M., N. Rakotomalala, D. Salin und Y. C. Yortsos. „Capillary Effects in Immiscible Flows in Heterogeneous Porous Media“. Europhysics Letters (EPL) 21, Nr. 1 (01.01.1993): 19–24. http://dx.doi.org/10.1209/0295-5075/21/1/004.
Der volle Inhalt der QuelleGhommem, Mehdi, Eduardo Gildin und Mohammadreza Ghasemi. „Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media“. SPE Journal 21, Nr. 01 (18.02.2016): 144–51. http://dx.doi.org/10.2118/167295-pa.
Der volle Inhalt der QuelleSandrakov, G. V. „HOMOGENIZED MODELS FOR MULTIPHASE DIFFUSION IN POROUS MEDIA“. Journal of Numerical and Applied Mathematics, Nr. 3 (132) (2019): 43–59. http://dx.doi.org/10.17721/2706-9699.2019.3.05.
Der volle Inhalt der QuelleÈiegis, R., O. Iliev, V. Starikovièius und K. Steiner. „NUMERICAL ALGORITHMS FOR SOLVING PROBLEMS OF MULTIPHASE FLOWS IN POROUS MEDIA“. Mathematical Modelling and Analysis 11, Nr. 2 (30.06.2006): 133–48. http://dx.doi.org/10.3846/13926292.2006.9637308.
Der volle Inhalt der QuelleParmigiani, A., C. Huber, O. Bachmann und B. Chopard. „Pore-scale mass and reactant transport in multiphase porous media flows“. Journal of Fluid Mechanics 686 (30.09.2011): 40–76. http://dx.doi.org/10.1017/jfm.2011.268.
Der volle Inhalt der QuelleDoorwar, Shashvat, und Kishore K. Mohanty. „Viscous-Fingering Function for Unstable Immiscible Flows“. SPE Journal 22, Nr. 01 (15.07.2016): 019–31. http://dx.doi.org/10.2118/173290-pa.
Der volle Inhalt der QuelleZakirov, T. R., O. S. Zhuchkova und M. G. Khramchenkov. „Mathematical Model for Dynamic Adsorption with Immiscible Multiphase Flows in Three-dimensional Porous Media“. Lobachevskii Journal of Mathematics 45, Nr. 2 (Februar 2024): 888–98. http://dx.doi.org/10.1134/s1995080224600134.
Der volle Inhalt der QuelleKozdon, J., B. Mallison, M. Gerritsen und W. Chen. „Multidimensional Upwinding for Multiphase Transport in Porous Media“. SPE Journal 16, Nr. 02 (13.01.2011): 263–72. http://dx.doi.org/10.2118/119190-pa.
Der volle Inhalt der QuelleDissertationen zum Thema "Immiscible multiphase flows in heterogeneous porous media"
Dashtbeshbadounak, Narges. „Changement d'échelle de déplacements de fronts en milieux hétérogènes et application à l'EOR“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS084.
Der volle Inhalt der QuelleNumerical modelling is a widely used tool in applied geoscience for quantifying flow in porous media, that is necessary to predict performance and optimize prospect exploitation at minimal environmental risk and cost. Reaching a satisfactory approximation of the exact solution and a robust numerical model of multiphase flows is particularly challenging because of the heterogeneity of the porous medium across a wide range of length scales, the coupling and nonlinearity of the driving equations, and the necessity of capturing all scales in the macroscale numerical model in a computationally efficient way. We have developed a sequential approach to accelerate immiscible multiphase flow modelling in heterogeneous porous media using discontinuous Galerkin methods and dynamic mesh coarsening. This approach involves dynamic domain decomposition and different solution strategies in the different flow regions, using a criterion that can be fastly evaluated. We use high-resolution grids and low order methods in regions near the saturation discontinuity and a discontinuous Galerkin method along with low-resolution grids in single-phase flow regions of the domain. We present a fast technique to estimate the position of the saturation front and identify the flow zones that need high-resolution gridding and eventually, we demonstrate the accuracy of our approach through test cases from the second SPE10 model by comparing our results with fine-scale simulations
Buchteile zum Thema "Immiscible multiphase flows in heterogeneous porous media"
„Immiscible Displacements and Multiphase Flows: Network Models“. In Flow and Transport in Porous Media and Fractured Rock, 575–632. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636693.ch15.
Der volle Inhalt der Quelle„Immiscible Displacements and Multiphase Flows: Experimental Aspects and Continuum Modeling“. In Flow and Transport in Porous Media and Fractured Rock, 519–73. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636693.ch14.
Der volle Inhalt der QuelleAmaziane, B. „Numerical simulation of multiphase flows in heterogeneous porous media“. In Poromechanics II, 321–26. CRC Press, 2020. http://dx.doi.org/10.1201/9781003078807-50.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Immiscible multiphase flows in heterogeneous porous media"
Zhou, Dengen, F. J. Fayers und F. M. Orr. „Scaling of Multiphase Flow in Simple Heterogeneous Porous Media“. In SPE/DOE Improved Oil Recovery Symposium. SPE, 1994. http://dx.doi.org/10.2118/27833-ms.
Der volle Inhalt der QuelleCusini, M. C., C. van Kruijsdijk und H. Hajibeygi. „Algebraic Dynamic Multilevel (ADM) Method for Immiscible Multiphase Flow in Heterogeneous Porous Media with Capillarity“. In ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201601901.
Der volle Inhalt der QuelleAl-bayati, Duraid, Ali Saeedi, Ipek Ktao, Matthew Myers, Cameron White, Ali Mousavi, Quan Xie und Christopher Lagat. „X-Ray Computed Tomography Assisted Investigation of Flow Behaviour of Miscible CO2 to Enhance Oil Recovery in Layered Sandstone Porous Media“. In SPE Conference at Oman Petroleum & Energy Show. SPE, 2022. http://dx.doi.org/10.2118/200103-ms.
Der volle Inhalt der QuelleVerdiere, S., D. Guérillot und J. -M. Thomas. „Dual Mesh Method for Multiphase Flows in Heterogeneous Porous Media“. In ECMOR V - 5th European Conference on the Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 1996. http://dx.doi.org/10.3997/2214-4609.201406903.
Der volle Inhalt der QuelleDashtbesh, N., B. Noetinger und G. Enchéry. „An Efficient Implementation of the Discontinuous Galerkin Method for Multiphase Flows through Heterogeneous Porous Media“. In ECMOR XVII. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202035120.
Der volle Inhalt der QuelleAhmadi, G., D. Crandall und D. H. Smith. „Gas-Liquid Flows in Flow Cells and Fracture Models“. In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55253.
Der volle Inhalt der QuelleDaripa, Prabir. „Fluid Dynamical and Modeling Issues of Chemical Flooding for Enhanced Oil Recovery“. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11516.
Der volle Inhalt der QuelleLanetc, Zakhar, Aleksandr Zhuravljov, Artur Shapoval, Ryan T. Armstrong und Peyman Mostaghimi. „Inclusion of Microporosity in Numerical Simulation of Relative Permeability Curves“. In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-21975-ms.
Der volle Inhalt der Quelle