Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Imidazolium immobilization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Imidazolium immobilization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Imidazolium immobilization"
Finn, M., N. An und A. Voutchkova-Kostal. „Immobilization of imidazolium ionic liquids on hydrotalcites using silane linkers: retardation of memory effect“. RSC Advances 5, Nr. 17 (2015): 13016–20. http://dx.doi.org/10.1039/c4ra13839b.
Der volle Inhalt der QuelleBahadorikhalili, Saeed, Leila Ma’mani, Hossein Mahdavi und Abbas Shafiee. „Palladium catalyst supported on PEGylated imidazolium based phosphinite ionic liquid-modified magnetic silica core–shell nanoparticles: a worthy and highly water-dispersible catalyst for organic reactions in water“. RSC Advances 5, Nr. 87 (2015): 71297–305. http://dx.doi.org/10.1039/c5ra12747e.
Der volle Inhalt der QuelleTripathi, Alok Kumar, Yogendra Lal Verma und Rajendra Kumar Singh. „Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41“. Journal of Materials Chemistry A 3, Nr. 47 (2015): 23809–20. http://dx.doi.org/10.1039/c5ta05090a.
Der volle Inhalt der QuelleSharma, Anshu, Kamla Rawat, Pratima R. Solanki und H. B. Bohidar. „Electrochemical response of agar ionogels towards glucose detection“. Analytical Methods 7, Nr. 14 (2015): 5876–85. http://dx.doi.org/10.1039/c5ay01310k.
Der volle Inhalt der QuelleMahmoudi, Hamed, Federica Valentini, Francesco Ferlin, Lucia Anna Bivona, Ioannis Anastasiou, Luca Fusaro, Carmela Aprile, Assunta Marrocchi und Luigi Vaccaro. „A tailored polymeric cationic tag–anionic Pd(ii) complex as a catalyst for the low-leaching Heck–Mizoroki coupling in flow and in biomass-derived GVL“. Green Chemistry 21, Nr. 2 (2019): 355–60. http://dx.doi.org/10.1039/c8gc03228a.
Der volle Inhalt der QuelleYuan, Ya Mei, Qiu Jin Li, Song Kun Yao, Ji Xian Gong und Jian Fei Zhang. „Different Patterns of Ionic Liquids-Regenerated Cellulose Carriers for Papain Immobilization“. Advanced Materials Research 864-867 (Dezember 2013): 319–23. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.319.
Der volle Inhalt der QuelleTakahashi, Nobuyuki, Hideo Hata und Kazuyuki Kuroda. „Exfoliation of Layered Silicates through Immobilization of Imidazolium Groups“. Chemistry of Materials 23, Nr. 2 (25.01.2011): 266–73. http://dx.doi.org/10.1021/cm102942s.
Der volle Inhalt der QuellePassos, Marieta L. C., Emília Sousa und M. Lúcia M. F. S. Saraiva. „Immobilized imidazolium-based ionic liquids in C18 for solid-phase extraction“. Analyst 145, Nr. 7 (2020): 2701–8. http://dx.doi.org/10.1039/c9an02479d.
Der volle Inhalt der QuelleZhao, Cuifang, Baozeng Ren, Yuting Song, Junling Zhang, Lingchao Wei, Shimou Chen und Suojiang Zhang. „Immobilization and molecular rearrangement of ionic liquids on the surface of carbon nanotubes“. RSC Adv. 4, Nr. 31 (2014): 16267–73. http://dx.doi.org/10.1039/c4ra00569d.
Der volle Inhalt der QuelleYuan, Ya Mei, Qiu Jin Li, Song Kun Yao, Wei Zhang und Jian Fei Zhang. „Immobilization of Papain on Regenerated Cellulose from Ionic Liquids“. Applied Mechanics and Materials 448-453 (Oktober 2013): 1651–55. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1651.
Der volle Inhalt der QuelleDissertationen zum Thema "Imidazolium immobilization"
Adjez, Yanis. „Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Der volle Inhalt der QuelleNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions