Zeitschriftenartikel zum Thema „Imaging systems in medicine“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Imaging systems in medicine.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Imaging systems in medicine" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Foppen, Wouter, Nelleke Tolboom und Pim A. de Jong. „Systems Radiology and Personalized Medicine“. Journal of Personalized Medicine 11, Nr. 8 (04.08.2021): 769. http://dx.doi.org/10.3390/jpm11080769.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hacker, Marcus, Rodney J. Hicks und Thomas Beyer. „Applied Systems Biology—embracing molecular imaging for systemic medicine“. European Journal of Nuclear Medicine and Molecular Imaging 47, Nr. 12 (07.04.2020): 2721–25. http://dx.doi.org/10.1007/s00259-020-04798-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Line, Bruce R. „Nuclear medicine information management systems“. Seminars in Nuclear Medicine 20, Nr. 3 (Juli 1990): 242–69. http://dx.doi.org/10.1016/s0001-2998(05)80033-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zaidi, Habib. „Multimodality molecular imaging: Paving the way for personalized medicine“. Medical Technologies Journal 1, Nr. 3 (17.09.2017): 44. http://dx.doi.org/10.26415/2572-004x-vol1iss3p44-46.

Der volle Inhalt der Quelle
Annotation:
Early diagnosis and therapy increasingly operate at the cellular, molecular or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography (PET), x-ray CT and MRI are powerful techniques for in vivo imaging. The inability of PET to provide anatomical information is a major limitation of standalone PET systems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRI systems reveal structure and function, but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. This talk also reflects the tremendous increase in interest in quantitative molecular imaging using PET as both clinical and research imaging modality in the past decade. It offers a brief overview of the entire range of quantitative PET imaging from basic principles to various steps required for obtaining quantitatively accurate data from dedicated standalone PET and combined PET/CT and PET/MR systems including algorithms used to correct for physical degrading factors and to quantify tracer uptake and volume for radiation therapy treatment planning. Future opportunities and the challenges facing the adoption of multimodality imaging technologies and their role in biomedical research will also be addressed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Stephane Mananga, Eugene. „Recent Advances of Radiation Detector Systems in Nuclear Medicine Imaging“. JOURNAL OF BIOINFORMATICS AND PROTEOMICS REVIEW 2, Nr. 2 (2016): 169–71. http://dx.doi.org/10.15436/2381-0793.16.1183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lewellen, Tom K., Don DeWitt, Robert S. Miyaoka und Scott Hauck. „A Building Block for Nuclear Medicine Imaging Systems Data Acquisition“. IEEE Transactions on Nuclear Science 61, Nr. 1 (Februar 2014): 79–87. http://dx.doi.org/10.1109/tns.2013.2295037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lee, Daniel Y., und King C. P. Li. „Systems Diagnostics: The Systems Approach to Molecular Imaging“. American Journal of Roentgenology 193, Nr. 2 (August 2009): 287–94. http://dx.doi.org/10.2214/ajr.09.2866.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Duby, Tomas, Noam Kaplan und Yuval Zur. „4749948 NMR imaging systems“. Magnetic Resonance Imaging 7, Nr. 4 (Juli 1989): VI—VII. http://dx.doi.org/10.1016/0730-725x(89)90516-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

&NA;. „3M DryView Laser Imaging Systems“. Investigative Radiology 31, Nr. 6 (Juni 1996): 385. http://dx.doi.org/10.1097/00004424-199606000-00015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sivananthan, U. M. „Medical imaging systems techniques and applications; cardiovascular systems“. Radiography 5, Nr. 2 (Mai 1999): 120. http://dx.doi.org/10.1016/s1078-8174(99)90044-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Bilgen, Mehmet. „Feasibility and Merits of Performing Preclinical Imaging on Clinical Radiology and Nuclear Medicine Systems“. International Journal of Molecular Imaging 2013 (30.12.2013): 1–8. http://dx.doi.org/10.1155/2013/923823.

Der volle Inhalt der Quelle
Annotation:
Aim. Researchers have limited access to systems dedicated to imaging small laboratory animals. This paper aims to investigate the feasibility and merits of performing preclinical imaging on clinical systems. Materials and Methods. Scans were performed on rat and mouse models of diseases or injuries on four radiology systems, tomosynthesis, computed tomography (CT), positron emission tomography/computed tomography (PET-CT), and Magnetic Resonance Imaging (MRI), based on the availability at the author’s institute. Results. Tomosysthesis delineated soft tissue anatomy and hard tissue structure with superb contrast and spatial resolution at minimal scan time and effort. CT allowed high resolution volumetric visualization of bones. Molecular imaging with PET was useful for detecting cancerous tissue in mouse but at the expense of poor resolution. MRI depicted abnormal or intervened tissue at quality and resolution sufficient for experimental studies. The paper discussed limitations of the clinical systems in preclinical imaging as well as challenges regarding the need of additional gadgets, modifications, or upgrades required for longitudinally scanning animals under anesthesia while monitoring their vital signs. Conclusion. Clinical imaging technologies can potentially make cost-effective and efficient contributions to preclinical efforts in obtaining anatomical, structural, and functional information from the underlying tissue while minimally compromising the data quality in certain situations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kang, Shu, Ian R. Zurutuza und Raiyan T. Zaman. „Molecular Imaging in Medicine: Past, Present, and Future“. JSM Cardiothoracic Surgery 5, Nr. 1 (14.12.2023): 1–8. http://dx.doi.org/10.47739/2573-1297.cardiothoracicsurgery.1019.

Der volle Inhalt der Quelle
Annotation:
Recent advances in molecular imaging have facilitated early disease detection, diagnosis, and therapeutic efficacy monitoring. Clinicians aspire to achieve prompt diagnosis, provide personalized treatments, and accurately monitor and quantify therapy effectiveness. This has fueled a growing interest in tracing biomarkers and biochemicals associated with disease progression. Identifying crucial biomarkers and refining accurate, minimally invasive monitoring methods are the pivotal focuses of ongoing molecular imaging research. Consequently, there is a notable surge of interest in developing molecular probes and multi-modal systems to enhance imaging capabilities. This review is intended to provide an overview of the promise and limitations of different modalities employed in molecular imaging for patient care, along with the ongoing research aimed at innovating novel imaging agents and devices. Molecular imaging holds the potential to revolutionize disease diagnosis and treatment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

&NA;. „3M Medical Imaging Systems, Siemens Sign Qualification Agreement for 3M Dry View Laser Imaging Systems“. Investigative Radiology 31, Nr. 4 (April 1996): 248. http://dx.doi.org/10.1097/00004424-199604000-00013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Samira Maliyeva, Samira Maliyeva. „BIOMEDICAL SMART HOME SYSTEMS“. PIRETC-Proceeding of The International Research Education & Training Centre 23, Nr. 02 (19.04.2023): 125–33. http://dx.doi.org/10.36962/piretc23022023-125.

Der volle Inhalt der Quelle
Annotation:
Biomedical engineering is a system that includes the design, manufacture and operation of various systems, devices and methods used in the diagnosis and treatment of problems that may occur in human health. In recent years, as in the whole world, some important innovations in this field apply in the research conducted in Azerbaijan. Over the past 30 years, biomedical engineering has been established as an independent field of science and engineering. Currently, biological medicine is not limited to the field of medicine, it has continued to develop as a potential field, making an important contribution to the dentistry, veterinary medicine, rehabilitation, physical education, and sports fields. The types of biomedical devices available in stationary health care institutions are expressed in hundreds, and the number is expressed in thousands. From implant to stethoscope, from complex imaging medical devices such as MRI (magnetic resonance imaging) and X-rays devices to patient beds, many products that could be considered simpler have been designed by engineers. In modern hospitals, sophisticated engineering devices are used by doctors to treat patients. Biomedical smart home system or health-based smart homes are designed for patients who feel the need to return home after an average time from a hospital or healthcare facility, or who need to receive care at home. The article presents information about innovations in the mentioned field. Keywords: Bioengineering, biomedical equipment, biomedical sensor, smart home
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Chandra, Ramesh. „4818943 Phantom for imaging systems“. Magnetic Resonance Imaging 7, Nr. 5 (September 1989): IV. http://dx.doi.org/10.1016/0730-725x(89)90428-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Punchard, William F., und Robert D. Pillsbury. „4733189 Magnetic resonance imaging systems“. Magnetic Resonance Imaging 7, Nr. 3 (Mai 1989): III. http://dx.doi.org/10.1016/0730-725x(89)90567-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bath, M. „Evaluating imaging systems: practical applications“. Radiation Protection Dosimetry 139, Nr. 1-3 (10.02.2010): 26–36. http://dx.doi.org/10.1093/rpd/ncq007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

JARRITT, P. H., und P. D. ACTON. „PET imaging using gamma camera systems“. Nuclear Medicine Communications 17, Nr. 9 (September 1996): 758–66. http://dx.doi.org/10.1097/00006231-199609000-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

DENKBAŞ, EMIR B., und A. VASEASHTA. „NANOTECHNOLOGY IN MEDICINE AND HEALTH SCIENCES“. Nano 03, Nr. 04 (August 2008): 263–69. http://dx.doi.org/10.1142/s1793292008001313.

Der volle Inhalt der Quelle
Annotation:
The present investigation is aimed at the biomedical aspects of nanomaterials in medicine and health sciences. Synthesis of nanomaterials can be categorized into three main sections based on their system designation, viz. nanocolloidal systems, surface modification of the biomaterials at molecular level, and nanodevices. An overview of functionalized nanomaterials, devices, and systems in drug and gene delivery, controlled release systems, molecular imaging and diagnostics, cardiac therapy, dental care, orthopedics, and targeted cancer therapy is presented. We further present some preliminary results of our investigation of biodegradable polymeric nanospheres and nanofibers with significant applications in health and medicine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bamber, Jeffrey C. „Photoacoustic imaging in cancer medicine and research: Systems, results and future directions“. Journal of the Acoustical Society of America 145, Nr. 3 (März 2019): 1777. http://dx.doi.org/10.1121/1.5101505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Schillaci, Orazio, und Giovanni Simonetti. „Fusion Imaging in Nuclear Medicine—Applications of Dual-Modality Systems in Oncology“. Cancer Biotherapy and Radiopharmaceuticals 19, Nr. 1 (Februar 2004): 1–10. http://dx.doi.org/10.1089/108497804773391621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Evans, A. „Breast Imaging Reporting and Data Systems“. Breast 3, Nr. 2 (Juni 1994): 132. http://dx.doi.org/10.1016/0960-9776(94)90019-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Rivers, J., und I. Smith. „Performance Variation in Cardiac Imaging Systems“. Heart, Lung and Circulation 16 (Januar 2007): S52—S53. http://dx.doi.org/10.1016/j.hlc.2007.06.135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cicinelli, Maria Vittoria, Michele Cavalleri, Maria Brambati, Rosangela Lattanzio und Francesco Bandello. „New imaging systems in diabetic retinopathy“. Acta Diabetologica 56, Nr. 9 (15.06.2019): 981–94. http://dx.doi.org/10.1007/s00592-019-01373-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ferrari, Victor A., Brian Whitman, James C. Blankenship, Matthew J. Budoff, Marco Costa, Neil J. Weissman und Manuel D. Cerqueira. „Cardiovascular Imaging Payment and Reimbursement Systems“. JACC: Cardiovascular Imaging 7, Nr. 3 (März 2014): 324–32. http://dx.doi.org/10.1016/j.jcmg.2014.01.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

SASAGAKI, MICHIHIRO, MITSUHIRO MATSUMOTO und YOSHINOBU MORI. „CR PORTAL IMAGING : A LINAC GRAPHY USING STORAGE PHOSPHOR IMAGING SYSTEMS“. Japanese Journal of Radiological Technology 48, Nr. 7 (1992): 984–90. http://dx.doi.org/10.6009/jjrt.kj00003534082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

MATSUMOTO, MITSUHIRO, MICHIHIRO SASAGAKI und YOSHINOBU MORI. „CR PORTAL IMAGING : A LINAC GRAPHY BY STORAGE PHOSPHOR IMAGING SYSTEMS“. Japanese Journal of Radiological Technology 47, Nr. 4 (1991): 627–29. http://dx.doi.org/10.6009/jjrt.kj00003500111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Crommelin, Daan J. A., Gert Storm und Peter Luijten. „‘Personalised medicine’ through ‘personalised medicines’: Time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems“. International Journal of Pharmaceutics 415, Nr. 1-2 (August 2011): 5–8. http://dx.doi.org/10.1016/j.ijpharm.2011.02.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

&NA;. „Expert systems - a role in nuclear medicine?“ Nuclear Medicine Communications 12, Nr. 7 (Juli 1991): 565–68. http://dx.doi.org/10.1097/00006231-199107000-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bilge, Sedat, Attila Aydin und Mehmet Eryilmaz. „Endotracheal intubation with tactical fiberoptic imaging systems“. American Journal of Emergency Medicine 34, Nr. 3 (März 2016): 664–65. http://dx.doi.org/10.1016/j.ajem.2015.12.061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Tez, Selda, und Mesut Tez. „Imaging as a Complex Systems Science“. Radiology 249, Nr. 3 (Dezember 2008): 1083. http://dx.doi.org/10.1148/radiol.2493081289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wilson, T. „Three-dimensional imaging in confocal systems“. Journal of Microscopy 153, Nr. 2 (Februar 1989): 161–69. http://dx.doi.org/10.1111/j.1365-2818.1989.tb00556.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Alavi, Abass, Thomas J. Werner, Ewa Ł. Stępień und Pawel Moskal. „Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine“. Bio-Algorithms and Med-Systems 17, Nr. 4 (01.12.2021): 203–12. http://dx.doi.org/10.1515/bams-2021-0186.

Der volle Inhalt der Quelle
Annotation:
Abstract Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Glasenapp, A., A. Hess und J. T. Thackeray. „Molecular imaging in nuclear cardiology: Pathways to individual precision medicine“. Journal of Nuclear Cardiology 27, Nr. 6 (06.09.2020): 2195–201. http://dx.doi.org/10.1007/s12350-020-02319-6.

Der volle Inhalt der Quelle
Annotation:
AbstractGrowth of molecular imaging bears potential to transform nuclear cardiology from a primarily diagnostic method to a precision medicine tool. Molecular targets amenable for imaging and therapeutic intervention are particularly promising to facilitate risk stratification, patient selection and exquisite guidance of novel therapies, and interrogation of systems-based interorgan communication. Non-invasive visualization of pathobiology provides valuable insights into the progression of disease and response to treatment. Specifically, inflammation, fibrosis, and neurohormonal signaling, central to the progression of cardiovascular disease and emerging therapeutic strategies, have been investigated by molecular imaging. As the number of radioligands grows, careful investigation of the binding properties and added-value of imaging should be prioritized to identify high-potential probes and facilitate translation to clinical applications. In this review, we discuss the current state of molecular imaging in cardiovascular medicine, and the challenges and opportunities ahead for cardiovascular molecular imaging to navigate the path from diagnosis to prognosis to personalized medicine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Krupinski, Elizabeth A., und Yulei Jiang. „Anniversary Paper: Evaluation of medical imaging systems“. Medical Physics 35, Nr. 2 (28.01.2008): 645–59. http://dx.doi.org/10.1118/1.2830376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Shrestha, Raju, und Jon Yngve Hardeberg. „Evaluation and comparison of multispectral imaging systems“. Color and Imaging Conference 22, Nr. 1 (03.11.2014): 107–12. http://dx.doi.org/10.2352/cic.2014.22.1.art00018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Cheng, J. X., und X. S. Xie. „Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine“. Science 350, Nr. 6264 (26.11.2015): aaa8870. http://dx.doi.org/10.1126/science.aaa8870.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Zanzonico, Pat. „Principles of Nuclear Medicine Imaging: Planar, SPECT, PET, Multi-modality, and Autoradiography Systems“. Radiation Research 177, Nr. 4 (April 2012): 349–64. http://dx.doi.org/10.1667/rr2577.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sung, Myong-Hee, und James G. McNally. „Live cell imaging and systems biology“. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 3, Nr. 2 (20.08.2010): 167–82. http://dx.doi.org/10.1002/wsbm.108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Cruite, Irene, An Tang und Claude B. Sirlin. „Imaging-Based Diagnostic Systems for Hepatocellular Carcinoma“. American Journal of Roentgenology 201, Nr. 1 (Juli 2013): 41–55. http://dx.doi.org/10.2214/ajr.13.10570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Fox, Martin D. „31. Microcomputer Based Imaging Systems in Radiography“. Investigative Radiology 22, Nr. 9 (September 1987): S8. http://dx.doi.org/10.1097/00004424-198709000-00047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Richard, S., und J. H. Siewerdsen. „Optimization of dual-energy imaging systems using generalized NEQ and imaging task“. Medical Physics 34, Nr. 1 (15.12.2006): 127–39. http://dx.doi.org/10.1118/1.2400620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Maslebu, Giner, und Suryasatriya Trihandaru. „The Application of Nuclear Medicine“. Indonesian Journal of Physics and Nuclear Applications 1, Nr. 2 (30.06.2016): 81. http://dx.doi.org/10.24246/ijpna.v1i2.81-84.

Der volle Inhalt der Quelle
Annotation:
Currently, the practice of nuclear medicine in modern countries comprises a large number of procedures. It is applied to study function of organs/body systems, to visualize, to characterize, and to quantify the functional state of lesions and for targeted radionuclide therapy. This overview presents all kinds of application in nuclear medicine services. Instrumentation and radioactive/radiolabeled substances are the basic components for application. Biotechnology contributes to the development and production of biomolecules used in radiopharmaceuticals. As a diagnostic modality, imaging depicts radioactivity distribution as a function of time. Hybrid imaging provides more precise localization and definition of le-sions as well as molecular imaging cross validation. Counting tests study invivo<br />organ functions externally or assess analytes in the biologic samples. Radiopharmaceutical therapy can be applied directly into the lesion or targeted systemically. Nanotechnology facilitates targeting and opens the development of bimodal techniques. In addition, neutron application contributes to the advancement of nuclear medicine services, such as neutron activation analysis, neutron teletherapy and neutron capture therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Glenn, Marcus E. „Image compression for medical imaging systems“. Journal of Medical Systems 11, Nr. 2-3 (Juni 1987): 149–56. http://dx.doi.org/10.1007/bf00992349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Gallot, Guilhem. „Terahertz sensing in biology and medicine“. Photoniques, Nr. 101 (März 2020): 53–58. http://dx.doi.org/10.1051/photon/202010153.

Der volle Inhalt der Quelle
Annotation:
Terahertz radiation offers new contrasts with biological systems, without markers or staining, at the molecular, cellular or tissue level. Thanks to technological advances, it is increasingly emerging as a solution of choice for directly probing the interaction with molecules and biological solutions. Applications range from dynamics of biological molecules to imaging of cancerous tissues, including ion, protein and membrane sensors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Barneveld Binkhuysen, F. H. „Picture Archiving and Communication Systems (PACS) in Medicine“. European Journal of Radiology 14, Nr. 1 (Januar 1992): 78–79. http://dx.doi.org/10.1016/0720-048x(92)90070-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

TODD-POKROPEK, A., E. VAURAMO, P. COSGRIFF, I. SIPPO-TUJUNEN und K. BRITTON. „User requirements for information systems in nuclear medicine“. Nuclear Medicine Communications 13, Nr. 1 (1992): 299–305. http://dx.doi.org/10.1097/00006231-199205000-00002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kim, Joong, und Jae Lee. „Recent Advances in Hybrid Molecular Imaging Systems“. Seminars in Musculoskeletal Radiology 18, Nr. 02 (08.04.2014): 103–22. http://dx.doi.org/10.1055/s-0034-1371014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

MacDonald, Scott A., C. Grant Willson und Jean M. J. Frechet. „Chemical Amplification in High-Resolution Imaging Systems“. Accounts of Chemical Research 27, Nr. 6 (Juni 1994): 151–58. http://dx.doi.org/10.1021/ar00042a001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Mafee, Mahmood F., Mark Rapoport, Afshin Karimi, Sameer A. Ansari und Jay Shah. „Orbital and Ocular Imaging Using 3- and 1.5-T MR Imaging Systems“. Neuroimaging Clinics of North America 15, Nr. 1 (Februar 2005): 1–21. http://dx.doi.org/10.1016/j.nic.2005.02.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie